

Application Note

服务器散热风扇应用手册

三相电机控制 ASIC FT8132Q

峰岹科技(深圳)股份有限公司

目录

E	录	2
1	概述	4
	1.1 说明	4
	1.2 涉及的软/硬件和模块	4
2	硬件	5
	2.1 硬件原理图	5
	2.1.1 电源电路	6
	2.1.2 芯片电路	7
	2.1.3 功率驱动电路	8
	2.1.4 FG 接口电路	8
	2.1.5 PWM 接口电路	9
	2.1.6 BEMF 采样电路	10
	2.1.7 电流采样电路	11
	2.2 硬件参数配置	11
	2.2.1 采样电阻	11
	2.2.2 电流基准	12
3	调试步骤	
	3.1 第一步: 测量电机参数	13
	3.1.1 极对数	13
	3.1.2 相电阻(Rs)	13
	3.1.3 相电感(Ls)	13
	3.1.4 反电动势常数(Ke)	13
	3.2 第二步: 硬件连接	14
	3.3 第三步: 开启调试界面软件	15
	3.3.1 选择驱动模式	15
	3.3.2 确认硬件连接正常	16
	3.4 第四步: 调试操作说明	16
	3.4.1 基本功能调试	16
	3.4.2 启动可靠性测试	17
	3.4.3 调试完成烧录	17
4	参数说明	
	4.1 Motor & Hardware 模块	

Application Note

4.	.2 FOC Parameter 模块	. 18
4.	.3 Startup 模块	. 20
4.	.4 Run 模块	. 21
4.	.5 FG & RD 模块	. 22
4.	.6 SpeedCtrl 模块	. 23
4.	.7 CurveCfg1 模块	. 24
4.	.8 CurveCfg2 模块	. 24
4.	.9 Protection 模块	. 25
4.	.10 RSD 模块	. 27
4.	.11 RPD & Align 模块	. 28
4.	.12 Other Cfg 模块	. 28
4.	.13 OnOffConfig 模块	. 29
5修	改记录	.31

1 概述

1.1 说明

本应用方案说明文档详细介绍了如何使用峰岹科技的 FT8132Q 芯片,对服务器散热风扇电机实现无感 FOC 驱动 控制。

1.2 涉及的软/硬件和模块

软/硬件和模块	统一编号名字	节章	原因	
标件	FU-AM-FT8132-B-021-SW-	个部	调试雲在这工程软件上进行	
-1/17	V1. 0. 00-20220707	中工	阿风而江区土住扒目土起日	
	FU-AM-FT8132-B-393-HW-	全部	调试零在这硬件或而日产品板上进行	
硬件	V1. 0. 00-20220707		폣臥而在 (5 变件) 3 项目) 印放工进行	

2 硬件

2.1 硬件原理图

开发套件配套 Demo 板原理图如图 2-1 所示

图 2-1 硬件原理图

2.1.1 电源电路

Demo 板电源部分电路如图 2-2 所示

图 2-2 电源部分

其中 D1 与 D2 用来做防反接功能,防止直流电压接反烧坏板子。C1 与 C2 为母线电压滤波电容,用于稳定母线电压。

2.1.2 芯片电路

Demo 板芯片主体部分电路如图 2-3 所示

图 2-3 芯片主体

2.1.3 功率驱动电路

Demo 板功率驱动部分电路如图 2-4 所示

H PU	R2	4	QI	5		
	47R/0603	3		6		U
<u>L NU</u>	R5	2	GI DI	7	U	1
I shunt	47R/0603	1		8		U

图 2-4 功率驱动部分

驱动是采用 3P3N 架构,选用 P+N 半桥 MOS 管。

2.1.4 FG 接口电路

Demo 板 FG 接口部分电路如图所示。

图 2-5 FG 接口电路

FG 引脚耐压值可以达到 VCC 电压值,所以不需要额外添加隔离电路。

2.1.5 PWM 接口电路

Demo 板 PWM 接口部分电路如图 2-6 所示。

图 2-6 PWM 接口电路

PWM 引脚耐压值只能达到 5V,所以需要添加隔离电路。此处采用二极管隔离高电压。

2.1.6 BEMF 采样电路

图 2-7 BEMF 采样电路

此电路用于完成顺逆风启动功能。在电机启动之前检测反电动势电压,来确定电机转向和转速,以完成在电机非静 止状态下的安全可靠启动。

2.1.7 电流采样电路

Demo 板电流采样部分电路如图 2-8 所示。

图 2-8 电流采样电路

此电路用于采样电流信号,给到观测器运算,是 FOC 控制算法重要信号。R21 和 R22 电阻必须使用 1KΩ。C11 电 容推荐采用 100pF,不可以超过 1nF。

2.2 硬件参数配置

Demo 板上除了采样电阻阻值之外的其他器件一般不需要做更改。

2.2.1 采样电阻

采样电阻根据电机运行最大电流进行设计。采样电阻值越大,采样精度越高;但值越大,消耗在采样电阻上的功率 就越高,采样电阻温升就越高。在采样电阻的功率选择上,电流平方乘以电阻不能超过采样电阻的额定功率,需根据温 升做降额处理。表 2-1 是一般情况下电阻功率和封装大小对照表。

	表	2-1	贴片电阻功率和封装大小对照表
--	---	-----	----------------

封装大小	最大功率(W)
0805	0. 125
1206	0.25
1210	0. 5
2512	1

2.2.2 电流基准

电流基准 lbase 的计算与采样电阻 Rsample、运放放大倍数 Amp、ADC 参考电压 Vref(默认为 5V)相关。电流基 准、最大采样电流、最小采样电流的计算公式如下所示:

$$Ibase = \frac{Vref}{Rsample \times Amp}$$

$$Is \max = \frac{Ibase}{2}$$

$$Is \min = -\frac{Ibase}{2}$$

3 调试步骤

3.1 第一步:测量电机参数

在正式调试电机之前需要先测量电机极对数(Pole-Pairs)、相电阻(Rs)、相电感(Ls)和反电动势常数(Ke)。

3.1.1 极对数

电机的极对数是相对于转子来说的,转子磁钢的一个 N 极加一个 S 极为一对极。转子的极对极就是指磁钢的 N 极 个数(或者 S 极个数)。极对数最直观的测量方法是使用磁性显示纸,如图 3-1 所示。在图 3 1 中明显可以观察到有 10 个磁极,则此转子磁钢为 5 对极。

图 3-1 磁显纸下的转子磁钢

如果手中没有磁显纸也可以采用其他方法。有一种方法是给电机任意两相相线通电(注意控制好电压和电流,避免烧 毁电机线圈),将转子转动一周,感受转子在非外力作用下可停止位置的个数,即为极对数。另一种方法是用铁质工具(螺 丝刀之类)贴近转子,将铁质工具转动一周,感受排斥力的次数,即为磁极数,除以2为极对数。

3.1.2 相电阻(Rs)

将电桥测量频率调整为 100Hz,将电机任意两根电机线接入电桥,测的电阻参数为电机线电阻,将线电阻除以 2 为我们想要的相电阻。配置 FOC 的参数

3.1.3 相电感(Ls)

将电桥测量频率调整为 1kHz,将电机任意两根电机线接入电桥,测的电感参数为电机线电感,将线电感除以 2 为 我们想要的相电感。

3.1.4 反电动势常数(Ke)

将示波器的地接电机的一相,探头接其余两相中任一相,转动负载,测出反电动势波形。因反电动势波形是正弦的, 取中间的一个正弦波,测量其峰峰值 Vpp 和频率 f。

对应公式如下所示:

$$Ke = 1000 * p * \frac{Vpp}{2 * 1.732 * 60 * f}$$

其中, p 为电机极对数, Vpp 为正弦波峰峰值; f 为正弦波频率。

例: 测量某电机的反电动势波形如图 3-2 所示:

图 3-2 反电动势波形

测量其中一个正弦波的峰峰值 Vpp 为 2.05V,频率 f 为 15.82Hz,极对数为 4,则:反电动势Ke = 1000 * 4 * ^{2.05}/_{2*1.732*60*15.82} = 2.4939。 注:将上面测量到的参数填入到 4.1 的电机参数模块

3.2 第二步:硬件连接

首先,如图 3-3 所示将 USB 线的 Type-A 口连接电脑,Type-B 口连接调试器,调试线连接调试器与 DEMO 板, DEMO 板连接 DC 电源(注意,此时不要给 DEMO 板上电),电机连接到 DEMO 板。

Application Note

图 3-3 硬件连接

3.3 第三步: 开启调试界面软件

3.3.1 选择驱动模式

打开开发套件中包含的FT8132Debugger_Vx.x.x.x文件,解压后双击打开FT8132Debugger_Vx.x.x.xx.exe文件, 在FT8132StartWindow 界面中进行如图 3-4 所示选择,然后点击 Confirm 进入到参数调试界面。

图 3-4 调试模式选择

3.3.2 确认硬件连接正常

此时给 demo 板上电,点击图 3-5 所示界面左下角 Find 按钮,如果没有弹出报错对话框说明通信成功,硬件 连接正常。如果有报错,请按照错误提醒检查硬件连接情况。

			100000 A							
			F18132	2 EVM GUI				Enab	le Log	
SensorBasic	SensorlessBasic	Function	Curve	Protect&Other	Display	On	Off	Download		
Function	Motor Status						Status I	Register		
Curve	SpdCtrl				0	%	THETA	0x0000	IA <u>A</u> REF	0x0000
Display	L	Diseble @ Madao					OMEGA	0x0000	IB <u>A</u> REF	0x0000
DnOff	dbg_md	Mode1 O Mode2					UDC	0x0000	ICAREF	0x0000
Download	TestDir 🧕	cw © ccw					WOUT	0x0000	EMF	0x0000
	Rum Chiff	Dischler O Fachler					UQ	0x0000	PwmReal	0x0000
	PWINSIAIC						UD	0x0000	IQFDB	0x0000
	FocDebug0 T	heta_Eome 🚽					IA_MAX	0x0000	tim <u>a</u> rr	0x0000
	ForDebug1	a Ealp	Speed	0	rom/n	in	IB_MAX	0x0000	IC_MAX	0x0000
	rococouge [ipityti		ITRIP	0x0000	POWER	0x0000
							HallOme	ga 0x0000	ITripRef	0x0000
	Status U	KOO IDLE					RPDPOSE	TION 0x0000	SpdCtrl	0x0000
ID Setting	Fault Status						OnOff	Config		
Addr 0x00 0x00	Fault Code 0						OnOffEn	OFF		
	ruar couc -					_	StartDuty	25 %	Time	5
0xFF							StopDuty	0 %	Time	10
							TotalCnt	100	ExeCnt	5
Find Exit I2C	Stall Pha	seLoss OVOL	UVOL	TSD OCP	IREF_ERR h	ill_abn	DirSw	itch	FailCnt	5
		Debug			Chain			1	Foot	

图 3-5 参数调试界面

3.4 第四步:调试操作说明

3.4.1 基本功能调试

将界面中参数按照项目需求进行填写后,点击界面下方 Debug 按钮可以使芯片按照界面中参数工作,在 Display 选项卡中可以查看芯片实时运行状态,包括电机转速,保护状态,保护类型,寄存器参数等。各功能对应参数在第4节中具体章节情况如下:

1.启动参数: 4.3 小节(Startup 模块)、4.11 小节(RPD&Align 模块);

2.估算器和运行环路参数: 4.2 小节(FOC Parameter 模块)、4.4 小节(Run 模块);

3.速度曲线参数: 4.6 小节(SpeedCtrl 模块)、4.7 小节(CurveCfg1 模块)、4.8 小节(CurveCfg2 模块);

4.FG&RD 输出参数: 4.5 小节(FG&RD 模块);

5.保护功能参数: 4.9 小节(Protection 模块);

6.顺逆风功能参数: 4.10 小节(RSD 模块)。

由于通信引脚占用了 FG 和 PWM 引脚,所以在调试阶段可以在 function 选项卡的右下角将 SpdCtrlMode 参数设置为 I2C,在 Display 选项卡中可以通过设置 SpdCtrl 参数调试不同 duty 下转速。

3.4.2 启动可靠性测试

在完成基本功能调试后,需要进行基本的启动可靠性测试。在 Display 选项卡右下角 OnOffConfig 功能模块可以进行自动启动可靠性测试。推荐最少进行 3000 次启动可靠性测试。如果项目为宽电压应用,也需要测试不同电压下启动可靠性。具体参数请查看 4.13。

3.4.3 调试完成烧录

在所有功能调试完成满足项目需求后,将 SpdCtrlMode 参数按照项目需求调整为 Analog 或 PWM。在 Download 选项卡中点击 GenCode 按钮生成烧录文件。勾选 Enabel Writing Code Mode,点击 Write 按钮。如图 3-6 所示,当中 间圆显示绿色,标志烧录成功。

图 3-6 烧录

4 参数说明

4.1 Motor & Hardware 模块

此模块是电机的参数和硬件信息配置,如图 4-1 所示。

(Motor&Hard	dware
Pole-Pairs	5
Rs(Ω)	3.259
Ls(H)	0.0017870
Ke	5.2143500
Rsample(Ω)	0.1
Amp	4X •
vdc_adj	

图 4-1Motor & Hardware 模块

其中 Pole-Pairs、Rs、Ls 和 Ke 在 3.1 节已经讲过测量方法,将测量数据填入即可(注:填写时注意 GUI 标注的参数单位)。Rsample 为采样电阻阻值,在 2.2 节已经讲解采样电阻阻值选取原则,填写板子上实际焊接阻值大小即可。 Amp 为采样信号的放大倍数,选择后内部会自动配置相应的放大倍数。Vdc_adj 为电压采样分压比,选择后内部会自动 配置相应的分压比。

4.2 FOC Parameter 模块

此模块参数为 FOC 控制算法相关参数,如图 4-2 所示。

图 4-2 FOC Parameter 模块

SMPMode

采样模式选择。不可以做修改。

PLL/SMO

观测器选择。一般使用SMO。

AO_EN

自适应观测器使能位。当选择Enable时将使用自适应观测器。此时PLL/SMO只能选择SMO模式。

- AO_ek3 自适应观测器EK3参数。只在AO_EN选择Enable时有效。
- sta_pll
 PLL启动SMO运行使能位。一般不使能。
- SegEn

SVPWM模式选择。一般选择svpwm7。

■ sin/Atan

角度计算方式选择。一般选择atan。

- NewSingle 新单电阻使能位。一般选择Disable。
- EBW

反电动势滤波值。当PLL/SMO选择PLL时有效。其影响电机的启动和最高转速。EBW太小,容易导致无法 达到最高转速,EBW太大,估算器参数容易溢出。常与EBW Mode配合调节启动和运行的EBW。

ATOB

速度估算的PI参数。影响电机的启动和最高转速,常与EKNum配合调节启动和运行的ATOBW。一般设置在10~70之间。

BaseFreq

基准频率。一般设置为最大转速*2*极对数/60,在选项中选择一个最接近的基准频率即可。

SampleTime

采样时间。一般不需要修改。

SPD_BW

速度滤波的低通滤波系数。一般不需要修改。

EBW_Mode

EBW模式选择。

- 0: 启动和运行都是一个EBW。
- 1: 启动时前0.8s调用1/2的EBW作为输入参数,0.8s后为正常的EBW。
- 2: 启动时前0.8s调用1/4的EBW作为输入参数, 0.8s~1.6s的输入参数为1/2的EBW, 1.6s后为正常的EBW。

■ LeadAngle

提前角设置。一般不需要修改。

EKNum

ATOBW模式选择。为了保证启动可靠性与顺滑,可以在启动时将ATOBW由小逐渐切换到ATOBW设置值。

0: 启动和运行都是一个 ATOBW。

1: 启动时前 0.8s 调用 1/2 的 ATOBW 作为输入参数, 0.8s 后为正常 ATOBW。

2: 启动时前 0.8s 调用 1/4 的 ATOBW 作为输入参数, 0.8s ~ 1.6s 的输入参数为 1/2 的 ATOBW, 1.6s 后为正常的 ATOBW。

3: 启动时前 0.8s 调用 1/8 的 ATOBW 作为输入参数, 0.8s ~ 1.6s 的输入参数为 1/4 的 ATOBW, 1.6s ~ 2.4s 的输入参数为 1/2 的 ATOBW, 2.4s 后为正常的 ATOBW。

■ TSMIN

单电阻采样最小采样窗口。一般不需要修改。

DT_SEL

死区时间。需要保证死区时间足够,不能出现上下桥直通情况。需要根据实际使用调整,一般设置在0.83

- ~ 1.33µs₀
- KSLDE

滑膜增益值。一般不需要改,保持默认值即可当电机处于保护状态时,显示触发的保护类型。当正常运行状态时故障状态为0。

4.3 Startup 模块

此模块为启动相关参数,如图 4-3 所示。

Startup				
ControlMode	SpeedLoo	op ▼		
StartCurrent	0.393			
EFREQAcc				25
EFREQMin				0.4 %
CloSpeed	© 0.5x	1x	© 2x	© 4x
EFREQHold	© 1x	2x	⊘ 4 x	© 8x

图 4-3 Startup 模块

芯片启动方式的原理是给定启动电流,估算算法估算当前速度,当估算器的估算速度小于启动最小切换转速 EFREQMin,强制速度从0开始,每个运算周期与启动增量 EFREQAcc 相加,同时启动限制 EFREQHold 进行最大值 限幅。电机角度是通过输出的强制速度计算给出。当估算器的估算速度大于或等于 EFREQMin 时,就不再强制速度给 出,切入电流闭环运行,速度和角度由估算器自身计算得到。

启动过程如图 4-4 所示:

图 4-4 启动过程示意图

ControlMode

控制模式选择。可以选择电压闭环、速度闭环、电流闭环和功率闭环。

StartCurrent

启动电流大小,单位:A。决定了启动力矩大小,需根据不同负载电机调整。

EFREQAcc

启动增量。决定了启动时强制输出速度的增加速度,是影响启动可靠性的一个重要参数。电机负载越轻, EFREQAcc就越大。

EFREQMin

启动的最小切换速度。当电机速度大于启动最小切换速度时,退出强拖加速,直接进入电 流环闭环控制。

CloSpeed

纯电流环控制切入到双闭环控制的转速判断条件。其配置与EFREQHold有关,有四个档 位可选。常见选择为EFREQHold的一倍。

EFREQHold

启动的限制速度。其配置与EFREQMin有关,有四档选择。常用选择为EFREQMin的2倍。

4.4 Run 模块

此模块为运行相关参数,如图 4-5 所示。

Run							
DQ_KP	0.1	StaIncTime	© 1s	C	2s	© 4s	6s
DQ_KI	0.001	Stb_Inc			•		4
WKP	0.1	Sta_Inc			Ų-		, , 3
WKI	0.001	PI_PERIOD	I0ms	C) 1 ms		
WOutMax			<u></u>			40	31.746 %

DQ_KP & DQ_KI

电流环PI调节器的比例系数和积分系数。影响电流环的响应和稳定性

WKP & WKI

外环PI调节器的比例系数和积分系数。外环PI参数影响到电机速度响应,其调节前提是电流内环已稳定。 若电流内环波动较大,需先将电流内环调节稳定再调试外环。因电压响应快于速度响应,若电机控制选择电压 环时,其WKP、WKI会比选择速度环WKP、WKI小很多。当电压环控制下,系统不稳定、电流波形异常,此时 应降低外环的PI参数。

StaIncTime

Sta_Inc作用时间

Stb_Inc

运行时外环爬坡增量。当电机启动或者改变档位时,为让系统更稳定,常采用将设定值以阶梯爬坡的形式 赋值到目标值中。Stb_Inc即为阶梯的爬坡增量,其设置的档位可选1~7和0。1~7依次表示为从慢到快,爬坡 越快,系统响应就越快,超调也会随之越严重。0表示不通过阶梯爬坡方式,直接将设定转速赋值给目标转速。 用户可根据响应时间需求和超调情况设置爬坡增量档位的大小。

Sta_Inc

启动时外环爬坡增量。启动时使用Sta_Inc做为爬坡增量,由StaIncTime决定Sta_Inc作用时间。当超过 StaIncTime时间后,由Stb_Inc做为爬坡增量。

PI_PERIOD

外环控制调节周期。为外环PI控制器调节周期

WOutMax

外环输出最大值。外环PI输出作为Q轴电流给定,为让系统超调小和更稳定,需设置外环输出最大值。 WOutMax*电流基准等于Q轴电流峰值可输出最大值,其设置要略高于电机运行最高转速所需的相电流峰值。

4.5 FG & RD 模块

此模块是FG与RD信号相关参数。

FG & RD
FGDIV Ix fg_idle_set Disable Enable
FGMUL Ix RDS_PU O Disable C Enable
FGRD_MD FG
FGCloseDelaySet () 0.4s () 0.8s () 1.2s () 1.6s

图 4-6 FG & RD 模块

FGDIV & FGMUL

FG信号分频系数和倍频系数。可以对FG信号进行分频和倍频,用于实现一个机械周期不同的FG输出信号。一个机械周期显示的FG个数=Pole-Pairs*FGMUL*FGDIV。

FGRD_MD

FG信号与RD信号模式选择。当选择FG时输出FG信号,当选择RD时输出RD信号,当选择FG & RD时, 正常运转时输出FG信号,在正常停机和保护状态输出电平状态会不同。

FGCloseDelaySet

FG信号延迟输出时间设置。可以解决在堵转保护重启时FG信号有输出的问题。

■ fg_idle_set

当使能此功能时,可以解决关机瞬间FG信号输出转速的跳变。

RDS_PU

RD功能转移后引脚上拉电阻使能位。一般选择Disable。

4.6 SpeedCtrl 模块

此模块是速度控制	相关参数。	_			
	SpeedCtrl				
	SpdCtrlMode	I2C	PwmOnOffhys	0.8%	◎ 1.6%
	start_clk	20Hz	▼ Qmin	0%	◎ 5%
	Speed_VSet	Disable	▼ quick <u>s</u> ta	Oisable	C Enable

SpdCtrlMode

调速方式选择。可以选择Analog(模拟电压)、PWM、I2C和clock四种模式。散热风扇常用Analog和PWM。

start_clk

Clock调速方式有效。散热风扇一般不需要。

Speed_VSet

保持默认值即可。

PwmOnOffhys

启动点滞回区大小设置。可选0.8%或1.6%。

- Qmin Q轴输出最小值。一般不需要修改。
- quick_sta

快速启动使能位。使能后,对100%和0%时高电平和低电平的判断时间会缩短。

4.7 CurveCfg1 模块

此模块是速度曲线模式相关参数。

CurveCfg1		
LimitSpeed	2000	
PwmOffMode	Stop	O MinSpeed
pwm_rev_en	Oisable	© Enable
CurveEn/spd10	00 🔍 Disable	© Enable

图 4-8 CurveCfg1 模块

LimitSpeed

限制速度。可以通过配置限制速度来实现限制电机运行的最高速度。若不需要限速,将LimitSpeed设置大于电机运行最高速度,接近速度基准即可。

pwmOffMode

PWMOffMode表示数字PWM占空比输入低于X_ON时,关闭输出或以设定的最低输出转动。选择Stop表示 关闭输出,选择MinSpeed表示以设定的最小输出转动。

选择MinSpeed时,当输入PWM低于等于X_ON时,以X_ON对应的档位运行。

pwm_rev_en

Disable表示调速曲线为正比例曲线; Enable表示调速曲线为反比例曲线。

■ CurveEn/spd100

当选择为速度闭环且Pwm_X98_En选择为Enable时,为98%以上速度开环曲线。当选择为电压闭环时,为 多段式速度曲线设置使能位。

4.8 CurveCfg2 模块

此模块是速度曲线相关参数。

CurveCfg2							
MinSpeed	150			X_ON	 18	14.063	%
MaxSpeed	1200			Y_ON	0	0.000	%
Y_Max_Sel	Q	0	100%	Y_25	 8	6.299	%
Pwm_X98_Er	n 🔘 Disable 🛛 🔘 Enable			Y_50	16	12,598	%
XON0	Q	0	0.000 %	Y_75	16	12.598	96

图 4-9 CurveCfg2 模块

MinSpeed

速度闭环下,速度曲线最小速度。只在速度闭环下有效。

MaxSpeed

速度闭环下,速度曲线最大速度。只在速度闭环下有效。

Y_Max_Sel

电压闭环下,100%对应输出电压设置。只在电压闭环下有效。当在速度闭环下,CurveEn/spd100选择Enable 并且Pwm_X98_En选择为Enable时,为98%以上速度开环曲线对应的输出duty。

■ Pwm_X98_En

输出最大对应的输入数字PWM占空比值,选择Disable表示对应输入100%时输出最大;选择Enable表示对应输入大于等于98%时输出最大。

XON0

当速度曲线要求0%时全速运转时,当调速duty低于此参数对应duty将全速运转。只在速度闭环下有效。

X_ON

速度曲线启动点设置。当调速duty高于此参数对应duty电机将启动运转。

Y_ON

电压闭环有效。决定X_ON点对应的输出duty。

Y_25/Y_50/Y_75

电压闭环有效。分别决定25%、50%和75%时对应输出duty。

4.9 Protection 模块

此模块为保护相关参数。

Protection									
FaultRecTimes 0									
LossPhaseEn 🔿 Disable 💿 Enable LPNorhCur 0.25									
Lock0	O Disable	Enable	LockMinS	peed	10				
Lock1	O Disable	Enable	LockMaxS	peed	2000				
Lock2	O Disable	Enable							
LockEmf					2				
Limit_ITrip	Q				0				
Ocp_Dis	Oisable	© Enable							
ocp_da	50	voltage: 0.9	80 v						
Ocp_Mod	ICP	O AMP0							
Ocp_Sel	© 0.5us	1us	🔘 Ous	© 0.2	5us				
Ouvp_Thr	0.938 V	🔘 1.875 V							
Uvp_Thr					7.500				
Ovp_Thr		Q			28.123				
ntc_en	O Disable	○ Enable							

图 4-10 Protection 模块

FaultRecTimes

保护重启次数设置。0表示不重启,5表示重启5次,10表示重启10次,∞表示无限次数重启。

LossPhaseEn

缺相保护使能位。

■ LPNorhCur

缺相保护阈值设置。数值越小,越容易判断进入缺相保护;数值越大,越不容易判断进入缺相保护。

Lock0

堵转保护方法一使能位。

LockMinSpeed

堵转保护方法一相关参数。当开启堵转保护方法一,并且估算转速小于LockMinSpeed时,进入堵转保护状态。

Lock1

堵转保护方法二使能位。

LockMaxSpeed

堵转保护方法二相关参数。当开启堵转保护方法二,并且估算转速大于LockMaxSpeed时,进入堵转保护 状态。

Lock2

堵转保护方法三使能位。

LockEmf

堵转保护方法三相关参数。当开启堵转保护方法三,并且估算转速大于LockMaxSpeed/8与反电动势小于 LockEmf时,进入堵转保护状态。

Ocp_Dis

过流保护关闭使能位。当选择Enable时,将关闭过流保护功能。当选择Disable时,将开启过流保护功能。

ocp_da

过流保护门限值设置。当Ocp_Mod选择ICP时,过流电流值乘以采样电阻阻值等于过流保护门限值。当 Ocp_Mod选择AMP0时,过流电流值乘以采样电阻阻值乘以放大倍数加上2.5V,等于过流保护门限值。所以当 Ocp_Mod选择AMP0时,ocp_da设置值要大于2.5V。

Ocp_Mod

过流保护模式设置。当选择ICP时,表示过流信号不经过运放直接使用采样电阻上电流信号。当选择AMP0时,表示过流信号使用运放输出端信号。需注意,当选择AMP0时,设置值不能小于2.5V,否则无法运行。

Ocp_Sel

过流保护滤波深度。以滤波后延迟时间表示,延迟时间越长滤波越深。

Ouvp_Thr

电压保护滞回档位设置。

■ Uvp_Thr

欠压保护值设置,单位:V。

Ovp_Thr

过压保护值设置,单位:V。

ntc_en

过温保护使能位。当选择Enable时,开启过温保护功能。当选择Disable时,关闭过温保护功能。

4.10 RSD 模块

此權	莫块是顺逆风相	目关参数。					
	RSD						
	RSDMode	RSD1 •	forward_sta_speed	1x	© 2x	© 4x	© 8x
	StaticSpeed	4	ReverseBrakeSpeed		a a a a a		, , 750Hz
	RSD2/3_0	\odot Threshold Low \bigcirc THreshold High	rsd_flt_sel	0.16us	© 1us	© 5.3us	© 10.6us
	RSD3_1	0	RVS_ALIGN_EN	Oisable		© Enable	
	ha_du 0	ha_ti 0	hall_align_speed	0	RSDBr	ake_en Disat	ole 🔻

图 4-11 RSD 模块

RSDMode

顺逆风功能使能位。当选择Disable时,关闭顺逆风功能。当选择RSD1时,开启顺逆风功能。

StaticSpeed

顺逆风静止速度。当电机正转,转速大于顺逆风静止速度时,直接切入闭环。当电机静止或者正转低于顺 逆风静止频率时,启动后再切入闭环。当电机逆转,转速低于顺逆风静止频率时,启动后再切入闭环。

forward_sta_speed

顺风启动速度。为防止高速顺风启动时电流电压过冲的现象,设置电机转速低于顺风启动速度才开始启动。 与ReverseBrakeSpeed配合设置,可以选择1、2、4、8倍的ReverseBrakeSpeed。

ReverseBrakeSpeed

反向刹车速度。为防止高速刹车时电流过冲的现象,设置电机转速低于反向刹车速度才开始刹车。

rsd_flt_sel

反电动势采样滤波深度。以滤波后延迟时间表示,延迟时间越长滤波越深。

RVS_ALIGN_EN

逆风预定位使能位。当选择Disable时,逆风启动时无预定位功能。当选择Enable时,逆风启动刹车后先预 定位后启动。

RSDBrake_en

逆风定时刹车使能位。当选择Disable时,逆风刹车是边刹边检模式,当速度低于StaticSpeed时停止刹车进行启动。当选择Enable时,逆风先检测后刹车模式,定时刹车4s后停止刹车进行启动。

4.11 RPD & Align 模块

此模块是预定位和初始位置检测相关函数。

RPD <u>A</u> lign	Disable	•	AlignDuty	- <u>-</u>		1.5 %
RPD1/2_0	Fast	○ Slow	AlignTime	- .	 	0.2 s
RPD1/2_1	Slow	⊖ Fast	RPD3_0		1. C	0
RPD1/2/3_2	Į		0			

图 4-12 RPD & Align 模块

RPDAlign

预定位,将电机转子的位置固定在已知的初始角度位置,启动时位置以该角度为初始角度开始计算。当选择Disable时表示没有预定位功能,当选择AlignEn时表示使能预定位功能。

AlignDuty

预定位duty设置。需注意不应给过大,设置过大时电流很大,有烧坏控制板或电机的风险。

AlignTime

预定位时间设置。负载比较大时,预定位时间可设置长时间;当负载较小时,预定位时间可设置短时间。

4.12 Other Cfg 模块

此模块是一些非常用功能参数。

	_					
Other Cfg						
carrier_sel	25k	04	2k	🔘 16k	© 20k	
SLP_DIS	Oisable	© E	nable			
McOff_Sel	1.6s	© 3	.2s	🔘 0s	© 6.5s	
Idle_Time	Os	© 0	.4s	© 0.8s	© 1.2s	
spd_blk0	0		speed: 6	5 rpm, 0 rpm		
spd_blk1	0		speed: 6	5 rpm, 0 rpm		
spd_blk2	0		speed: 6	5 rpm, <mark>0</mark> rpm		
spd_blk_wid	0		speed: () rpm		
thecomp_sel	$\neg \overline{\nabla}$					2
pwr_flt_sel	Oisable	0 2		0 4	8 ()	
cmp_modsel	Rsd Mode	01	Ŧ	cmp0_ph	y 🖲 12 🔿	24 3 3 6
amp_single	Oisable	© E	nable	amp_fs 🤇	Disable	O Enable
Dir_Inv	Oisable	© E	nable	Dir_En0 (Disable	Enable
Dir_En1	Oisable	© E	nable			
Limit_Sel	Q	1				0

图 4-13 Other Cfg 模块

carrier_sel

载波频率设置。一般选择25k即可。

McOff_Sel

关机延迟关闭输出时间设置。可以设置关机时缓关闭输出,避免突然关闭输出续流导致母线电压过冲。

Idle_Time

开机延迟开启输出时间设置。可以延迟开启输出。

■ Dir_Inv

反向运转使能。可以调整电机运行转向。

4.13 OnOffConfig 模块

此模块是 OnOff 测试相关参数。

Application Note

OnOffCo	onfig				
OnOffEn	OF	F)			
StartDuty	30	%	Time	6	s
StopDuty	0	%	Time	6	s
TotalCnt	3000		ExeCnt	0	
DirSwit	tch		FailCnt	0	

图 4-14 OnOffConfig 模块

OnOffEn

启停测试使能位。当选择On时,开启启停测试功能。当选择Off时,关闭启停测试功能。

- StartDuty/Time 运转阶段duty与时间设置。
- StopDuty/Time 停转阶段duty与时间设置。
- TotalCnt 测试次数设置。
- ExeCnt 成功次数显示。
- FailCnt
 失败次数显示。

5 修改记录

版本号	修改详细内容说明	生效日期	修订者
V1. 0. 00	初稿	2022/06/22	冯恩达
V1. 0. 01	修改硬件部分描述	2022/07/27	冯恩达
V1. 1	 修改格式问题 替换部分图片 	2023/06/09	李佳妮

版权说明

版权所有©峰昭科技(深圳)股份有限公司(以下简称:峰昭科技)。

为改进设计和/或性能,峰岹科技保留对本文档所描述或包含的产品(包括电路、标准元件和/或软件)进行更改的权利。本文档中包含的信息供峰岹科技的客户进行一般性使用。峰岹科技的客户应确保采取适当行动,以使其对峰岹科技产品的使用不侵犯任何专利。峰岹科技尊重第三方的有效专利权,不侵犯或协助他人侵犯该等权利。

本文档版权归峰岹科技所有,未经峰岹科技明确书面许可,任何单位及个人不得以任何形式或方式(如 电子、机械、磁性、光学、化学、手工操作或其他任何方式),对本文档任何内容进行复制、传播、抄 录、存储于检索系统或翻译为任何语种,亦不得更改或删除本内容副本中的任何版权或其他声明信息。

峰岹科技 (深圳)股份有限公司

深圳市南山区科技中二路深圳软件园二期 11 栋 2 楼 203

邮编: 518057

- 电话: 0755-26867710
- 传真: 0755-26867715
- 网址: www.fortiortech.com

本文件所载内容

峰昭科技(深圳)股份有限公司版权所有,保留一切权力。