

服务器散热风扇应用手册

三相电机控制-FOC-有感双霍尔 ASIC FT8132Q

峰岹科技(深圳)股份有限公司

目录

1 概述	4
2 硬件	5
2.1 硬件原理图	5
2.1.1 芯片电路	6
2.1.2 电源电路	6
2.1.3 功率驱动电路	7
2.1.4 电流采样电路	7
2.1.5 FG 接口电路	
2.1.6 PWM 接口电路	
2.1.7 霍尔电路	9
2.2 PCB 文件	
2.3 硬件参数配置	
2.3.1 采样电阻	
2.3.2 电流基准	
2.4 霍尔摆放位置与 UVW 出线位置	
2.5 测量霍尔与反电动势关系	13
3 调试步骤	17
3.1 电机参数配置	17
3.1.1 电机参数	17
3.1.2 电机参数测量方法	17
3.2 硬件连接	
3.3 开启调试界面软件	20
3.3.1 选择驱动模式	20
3.3.2 确认硬件连接正常	20
3.4 调试操作说明	21
3.4.1 基本功能调试	21
3.4.2 调试完成烧录	23
4 参数说明	24
4.1 HallParamCfg 模块	24
4.2 Motor&Hardware 模块	24
4.3 FOC Parameter 模块	25
4.4 Startup 模块	
4.5 Run 模块	27

Fortior Tech 峰昭科技

Application Note

4.6 FG & RD 模块	
4.7 SpeedCtrl 模块	29
4.8 RSD 模块	29
4.9 Protection 模块	
4.10 Lock Protection 模块	
4.11 Other Cfg 模块	
4.12 CurveCfg1 模块	
4.13 CurveCfg2 模块	35
5 方案调试难点&解决方法	
6 技术支持	
7 修改记录	38

1 概述

本应用方案说明文档详细介绍了如何使用峰岹科技的 FT8132Q 芯片,对 Y 形接法的服务器散热风扇电机实现 有感双霍尔 FOC 驱动控制。

2 硬件

2.1 硬件原理图

注意事项:该板子为服务器散热风扇应用 FT8132Q 方案的专用 DEMO 板子。

2.1.1 芯片电路

Demo 板芯片主体部分电路如图所示。

2.1.2 电源电路

注意事项: 其中 D1 与 D2 与 D4 用来做防反接功能,防止直流电压接反烧坏板子。C1 与 C2 与 C3 为母线电压 滤波电容,用于稳定母线电压。

2.1.3 功率驱动电路

Demo 板功率驱动部分电路如图所示,驱动是采用 3P3N 架构,选用 P+N 半桥 MOS 管。

2.1.4 电流采样电路

A0P	R18	I_shunt	-
	1K/1%/0402	C9	RS1
		100pF/16V/0402	\geq
A0M	R19	GND	0.01R/1%/1206
	1K/1%/0402		

此电路用于采样电流信号,给到观测器运算,是 FOC 控制算法重要信号。R18 和 R19 电阻必须使用 1kΩ。 C9 电容推荐采用 100pF,不可以超过 1nF。

2.1.5 FG 接口电路

FG 是 OC 输出,需要外部加上拉电阻进行上拉。FG 引脚耐压值可以达到 VCC 电压值,所以不需要额外添加 隔离电路。

VDD5 R14 10K/0402 D3 PWM 1N4148/SOD-523 R13 PWM/SCL 100R/0402

2.1.6 PWM 接口电路

PWM 引脚耐压值只能达到 5V,所以需要添加隔离电路。此处采用二极管隔离高电压。

2.1.7 霍尔电路

此为双数字霍尔电路,使用的是三脚的数字霍尔,一般建议使用数字霍尔,霍尔感应会更好一点,型号为 MA7020AA,此处直接使用芯片 IC 端 VIN_IC 电源进行供电,需注意选型霍尔耐压值。

此为双模拟霍尔电路,使用的是四脚的模拟霍尔,此处使用芯片 HBIAS 脚给霍尔供电,HUP 接芯片 HUP 引 脚,HUM 接芯片 HUM 引脚,HVP 接芯片 HVP 引脚,HVM 接芯片 HVM 引脚。

2.2 PCB 文件

资料中附带有双霍尔散热风扇 pcb 文件,如下图所示。

2.3 硬件参数配置

Demo 板上除了采样电阻阻值之外的其他器件一般不需要做更改。

2.3.1 采样电阻

采样电阻根据电机运行最大电流进行设计。采样电阻值越大,采样精度越高;但值越大,消耗在采样电阻上的功率就越高,采样电阻温升就越高。在采样电阻的功率选择上,电流平方乘以电阻不能超过采样电阻的额定功率,需根据温升做降额处理。下表是一般情况下电阻功率和封装大小对照表。

封装大小	最大功率(W)
0805	0.125
1206	0.25
1210	0.5
2512	1

2.3.2 电流基准

电流基准 lbase 的计算与采样电阻 Rsample、运放放大倍数 Amp、ADC 参考电压 Vref(默认为 5V)相关。电流 基准、最大采样电流、最小采样电流的计算公式如式 1、式 2、式 3 所示。

Vref	式 1
$\frac{100000}{Rsample \times Amp}$	
Ibase	式 2
$Is max = \frac{1}{2}$	
Ibase	式 3
Is min = $-\frac{1}{2}$	

2.4 霍尔摆放位置与 UVW 出线位置

电机绕线需用Y型连接,霍尔放置位置与UVW相线位置需要按照如下图所示固定,才可使用配套双霍尔散热风扇标准程序运行电机,否则电机将无法正常运行,需要重新对应霍尔关系,设置 hall_swi_md。如下以 4028 电机为例,UVW 相线按下图位置连接到 FT8132 芯片对应 UVW 引脚,霍尔按下图位置放在两槽中间。

霍尔选择的是 MA7020A, 感应 N 极输出高电平, S 极输出低电平, 如下图 2.3.1 所示。如选用霍尔的感应极 性相反,则需要在程序上将霍尔极性调换,把 hall_rev_en 选择为 disable。

按照下图放置好 UVW 相线与霍尔位置后,即可直接使用配套 GUI 和配套标准程序运行电机。

表 2-1 MA7020A 霍尔磁极感应标识

驱动器输出与磁极(SIP3)

Characteristics	Test Conditions	OUT
North pole	B>Brp	High
South pole	B>Bop	Low

图 2-1 电机 UVW 出线与霍尔放置位置

2.5 测量霍尔与反电动势关系

因霍尔、电机、板子装配等因素,可能会导致霍尔角度与反电动势有偏差,以下步骤说明如何测量霍尔与反电动势关系,确保霍尔与对应相的反电动势关系为:霍尔超前反电动势 **30**°。

 构建虚拟中性点。测量时电机 U/V/W 不能与板子相连,电机的 U/V/W 直接出线各串联 10K 电阻,电阻另 外一端接一起,构建虚拟中性点;

2. 示波器接线。示波器的探头分别电机的 U/V 与 Hall A 和 Hall B,示波器的 GND 共接虚拟中性点,虚拟中性点与电源地接一起。

3. 逆时针方向(电机运行时的转向)快速转动电机(手动或者借助工具),使其产生反电动势信号。测量 U 与 Hall A 关系,测量 V 与 Hall B 关系,如下图所示,通道 1 黄色是霍尔信号,通道 2 浅蓝色是反电动势, 测量出来霍尔超前反电动势 31.6°,(420/4780)*360 = 31.6°。同时可确认霍尔极性,如下图霍尔下降 沿对应反电动势上升沿,则程序 hall_rev_en 选择 Enable;若霍尔下降沿对应反电动势上升沿,则程序 hall_rev_en 选择 Disable。

3 调试步骤

3.1 电机参数配置

3.1.1 电机参数

- 1. 电机极对数 Pole_Pairs;
- 2. 电机的相电阻 RS
- 3. 相电感 LS
- 4. 以及反电动势常数 Ke;

3.1.2 电机参数测量方法

极对数 Pole_Pairs: 电机的极对数是相对于转子来说的,转子磁钢的一个 N 极加一个 S 极为一对极。转子的极对极就是指磁钢的 N 极个数(或者 S 极个数)。极对数最直观的测量方法是使用磁性显示纸,如图 3-1 所示。在下图中明显可以观察到有 10 个磁极,则此转子磁钢为 5 对极;

图 3-1 磁显纸下的转子磁钢

如果手中没有磁显纸也可以采用其他方法。有一种方法是给电机任意两相相线通电(注意控制好电压和电流,避免烧毁电机线圈),将转子转动一周,感受转子在非外力作用下可停止位置的个数,即为极对数。 另一种方法是用铁质工具(螺丝刀之类)贴近转子,将铁质工具转动一周,感受排斥力的次数,即为磁极数, 除以2为极对数

相电阻 Rs: 将电桥测量频率调整为 100Hz,将电机任意两根电机线接入电桥,测的电阻参数为电机线电阻,将线电阻除以 2 为我们想要的相电阻;

- 相电感 Ls: 将电桥测量频率调整为 1kHz,将电机任意两根电机线接入电桥,测的电感参数为电机线电感, 将线电感除以 2 为我们想要的相电感;
- 反电动势常数 Ke: 将示波器的地接电机的一相,探头接其余两相中任一相,转动负载,测出反电动势波
 形。因反电动势波形是正弦的,取中间的一个正弦波,测量其峰峰值 Vpp 和频率 f。计算公式如下:

Ke =
$$1000 * P * \frac{Vpp}{2 * 1.732 * 60 * f}$$

其中, P 为电机极对数。

示例,测量反电动势波形如下:

测量峰峰值 Vpp 为 33.2V,频率 f 为 7.042Hz,极对数 P 为 4,则:

3.2 硬件连接

首先,如下图所示将 USB 线的 Type-A 口连接电脑,Type-B 口连接调试器,三根调试线连接调试器与 DEMO 板。其中仿真器 FCK 接芯片第 11 脚 SPEED 脚,仿真器 FDA 接芯片第 10 脚 FG 脚,仿真器 GND 接芯片第 12 脚 VSS。DEMO 板连接 DC 电源(注意:此时不要给 DEMO 板上电),电机连接到 DEMO 板。

图 3-3 硬件连接

图 3-4 仿真器丝印

仿真器<->目标板	
FCK<>SPEED	
FDA<>FG	
GND<>VSS	

图 3-5 仿真器接线示意图

3.3 开启调试界面软件

3.3.1 选择驱动模式

打开开发套件中包含的 FTAsic813XDebugger_Vx.x.x.x 文件,解压后双击打开 FTAsic813XDebugger.exe 文件,在打开界面中进行如图所示选择 2HALL IC Cooling Fan 模式,然后点击 Confirm 进入到参数调试界面。

3.3.2 确认硬件连接正常

此时给 demo 板上电,点击下图所示界面左下角 Find 按钮,如果没有弹出报错对话框说明通信成功,硬件连接正常。如果有报错,请按照错误提醒检查硬件连接情况。报错通常一是没有给板子 VCC 供电,二是仿真器与板子三根通讯线接线顺序接错或者没有连接上,其中仿真器要直接连接到芯片,中间不能串联电阻,否则会导致通讯失败。

FT0122Debugger V10077			
File Edit Debug Stop Help			_
	FT8132 EVM G	UI	Enable Log
🕨 🎏 Sensor & Sensorless	Sensor & Sensorless Function & Protect & Other	Curve	Display Download
Function & Protect & Other	Motor Status		Status Register
Display	SpdCtrl	0 %	THETA 0x0000 IAAREF
Download	Y		OMEGA 0x0000 IBAREF
	dbg_md Disable Mode0 Mode1 Mode2		UDC 0x0000 ICAREF
	TestDir OCW OCCW		WOUT 0x0000 EMF
	PwmShift @ Dicable		UQ 0x0000 PwmReal
	Printing Stable C Enable		UD 0x0000 IQFDB
	FocDebug0 Theta_Eome 🗸		IA_MAX 0x0000 timarr
	ForDebug1 la Ealp Speed 0	rom/min	IB_MAX 0x0000 IC_MAX
	Toebeologi	(provinin	ITRIP 0x0000 POWER
	Status 0x00 and		HallOmega 0x0000 ITripRef
	Status 0x00 IDLE		RPDPOSITION 0x0000 SpdCtrl
	Cault Statur		ConOffConFig
ID Setting	Fault Code 0		
I2CAddr 0x00	rault code v		StartDuty 12 % Time
ChipID OxFF			StopDuty 0 % Time
			TotalCnt 100 ExeCnt
Find Exit I2C	Stall PhaseLoss OVOL UVOL TSD	OCP IREF_ERR hall_abn	DirSwitch FailCnt
			1

3.4 调试操作说明

3.4.1 基本功能调试

按照上述霍尔位置以及 UVW 出线顺序放置后,可点击左上角 Open,导入配套的双霍尔有感散热风扇标准程序,或者直接点击 Load Default,导入默认程序,即为双霍尔散热风扇标准程序。

将测量好的电机参数,填入到对应位置。

Motor&Hardware		
Pole-Pairs	2	
Rs(Ω)	0.24	
Ls(H)	0.0000550	
Ке	0.1420000	

将 SpdCtrlMode 选择 I2C 调速模式。由于通信引脚占用了 FG 和 PWM 引脚,所以在调试阶段可以在 function 选项卡的右下角将 SpdCtrlMode 参数设置为 I2C,在 Display 选项卡中可以通过设置 SpdCtrl 参数设置所需占空比, 调试不同 duty 下转速。

	SpdCtrlMode	I2C	•		
Motor Status					
SpdCtrl]		50	%

点击下方 Debug 按键即可初步运行电机,设置不同占空比即可调整转速。使芯片按照界面中参数工作,在 Display 选项卡中可以查看芯片实时运行状态,包括电机转速,保护状态,保护类型,寄存器参数等。具体参数含 义可查看第4节。

如遇无法启动或者启动失败,按照 2.4 节确认霍尔与反电动势极性关系,调整 hall_rev_en 选 Disable 或者选 Enable。遇到启动卡顿不顺畅,可先调大启动电流 StartCurrent 与切闭环速度 CloSpeed,如无改善再调整 EFREQMin, DFREQHold 值。

StartCurrent 1.8
EFREQMin
CloSpeed $\bigcirc 0.5x \odot 1x \bigcirc 2x \bigcirc 4x$
$EFREQHold \bigcirc 1x \ \bigcirc 2x \ \bigcirc 4x \ \textcircled{\bullet} 8x$

根据实际项目需求,在 Curve 页面设置所需调速曲线,在 ControlMode 选择速度环 SpeedLoop, MinSpeed 设置曲线最低速度, MaxSpeed 设置曲线最高速度,X_ON 设置曲线最低拐点,这样两点定出曲线基本设置好,当曲线设置好后,可将鼠标移动到右边曲线图中,可显示出对应 PWM 占空比下的对应速度,如下图所示。其余曲线相关参数含义可查看第4节。

如板子 UVW 无按照上述位置放置,则需要查看配套资料:三相有感电机对 Hall 手册-V4.3-20220729,去对应 霍尔关系,设置正确的 hall_swi_md 关系才可正常运行电机。

Application Note

FT8132Debugger V1.0.0.77 File Edit Debug Stop Help				- 🗆 X
E Tennor & Canvarlars	FT8132 EVM	GUI		Enable Log
► Sendra & Sendra	Sensor de Sensories Function & Protect & Other Carvec(g)	Curve Curve 5 ppced(RPM) 31000 31000 0 10%	Display	Download Duty 100%
L2CAddr 0x00 ChipID 0xFF Find Ext 12C	CurveClp2 MinSpeed 3100 MaxSpeed 3100 Y_Max_Sel	X_ON Y_ON 00% Y_25 Y_50 0000 % Y_75)	13 10.156 % 0 0.000 % 8 6.299 % 16 12.598 %
Device: Connected Elaps Time:	Debug 00:00:00 • IDLE All rights reserved. • 202	Stop		Test

3.4.2 调试完成烧录

在所有功能调试完成满足项目需求后,将SpdCtrlMode参数按照项目调速需求调整为Analog调速或PWM调速。在Download选项卡中点击GenCode按钮生成烧录文件。勾选Enabel Writing Code Mode,点击Write按钮。如图3.4.2所示,当中间圆显示绿色,标志烧录成功。

	FT8132 EVM	GUI	Enab	le Log
 Sensor & Sensorless Function & Protect & Other Curve Display Download 	Sensor & Sensorless Function & Protect & Other GenCode CodeFile CodeFile I2C Address 0x00	Curve. FT8132Debugger_V1.0.0	Display Source Code Checksum 0xFF06 .77\FT8132Debugger\UserConfigFil	Download Open
D Setting 2CAddr 0x00 ChipID 0xFF Find Exit 12C	Chip Cod 0x0000	łe Checksum	 Enable Writing Code Mod Write & Verify Write Total Erase Verify Only Verify 	e te Count Crnt 0 d Crnt 0 d Crnt 0
	Debug	Stop		Test

4 参数说明

4.1 HallParamCfg 模块

此模块是有感的参数配置。

HallParam	Cfg		
hall_rev_en	© Disable	e Enable	
hall_swi_md	Q		ABC
hall_sta_op	Oisable	© Enable	
hall_modsel	IC (© sensor	
hall_com_mc	0 💿 -30	0 🔘 30	

hall_rev_en

Hall A、B、C 反向使能。

■ hall_swi_md

Hall 交换设置。一般不需要修改。当 Hall 没有按照正确的位置顺序安装,可使用此功能调整 Hall 的顺序 到正确。

hall_sta_op

选择 Enable, 以 SVPWM 模式启动。选择 Disable, 以 FOC 模式启动, 启动电流为 StartCurrent 设置。 一般选择 Disable 即可。

hall_modsel

霍尔类型选择。选择 IC 为三脚的数字霍尔,选择 sensor 为四脚的模拟霍尔。

hall_com_md

Hall 与反电动势关系选择。当 Hall 上升沿与反电动势从负到正过零点重合,选择 0。当 Hall 上升沿超前 反电动 势从负到正过零点 30 度选择-30。当 Hall 上升沿滞后反电动势从负到正过零点 30 度,选择 30。

4.2 Motor&Hardware 模块

此模块是电机的参数和硬件信息配置,如下图所示。

Application Note

Motor&Hardware					
Pole-Pairs	2				
Rs(Ω)	0.55				
Ls(H)	0.0001600				
Ке	0.2800000				
Rsample(Ω)	0.01				
Amp	12X •				

其中 Pole-Pairs、Rs、Ls 和 Ke 在 3.1 节已经讲过测量方法,将测量数据填入即可(注意:填写时注意 GUI 标注的参数单位)。Rsample 为采样电阻阻值,在 2.2 节已经讲解采样电阻阻值选取原则,填写板子上实际焊接阻值大小即可,可按照标准原理图使用 0.01Ω 电阻。Amp 为采样信号的放大倍数,选择后内部会自动配置相应的放大倍数,可按默认选择 12 倍。

4.3 FOC Parameter 模块

此模块参数为 FOC 控制算法相关参数,如下图所示。

FOC Paran	neter	
BaseFreq		2000 Hz
SampleTime		3
SPD_BW		1
LeadAngle	Q	0 °
TSMIN		6
DT_SEL		0.83 us
ATOBW	30	

BaseFreq

基准频率。一般设置为最大转速*2*极对数/60,在选项中选择一个最接近的基准频率即可。

SampleTime

采样时间。当启动卡顿或者运行电流畸变,可进行调大。

■ SPD_BW

速度滤波的低通滤波系数。共分为4挡,常设置为1或者2。

- LeadAngle
 - 提前角设置。调大可以稍微提高电机转速与调整电机效率。
- TSMIN 单电阻采样最小采样窗口。当启动卡顿或者运行电流畸变,可进行调大。
- DT_SEL

死区时间。需要保证死区时间足够,不能出现上下桥直通情况。需要根据实际使用调整,一般设置在 0.83~1.33μs。

ATOBW

速度估算的 PI 参数。影响电机的启动和最高转速,常与 EKNum 配合调节启动和运行的 ATOBW。一般 设置在 10~70 之间,默认使用 30。

4.4 Startup 模块

此模块为启动相关参数,如下图所示。

Startup		
ControlMode	SpeedLoop	•
StartCurrent	1.8	
EFREQMin		
CloSpeed 🔘	0.5x 🖲 1x 🔇) 2x () 4x
EFREQHold O	1x © 2x @) 4x 🔘 8x

ControlMode

控制模式选择。一般不需要修改。可以选择电压闭环 VoltageLoop、速度闭环 SpeedLoop、电流闭环 CurrentLoop 和功率闭环 PowerLoop。散热风扇应用常用速度闭环 SpeedLoop。

StartCurrent

启动电流大小,单位:A。决定了启动力矩大小,需根据不同负载电机调整。负载越大所需启动电流越大。

EFREQMin

启动的最小切换速度。当电机速度大于启动最小切换速度时,角度使用估算器角度。设置值越大,对应 切入使用估算器所需的速度越大。

CloSpeed

纯电流环控制切入到双闭环控制的转速判断条件,设置值越大,切入双闭环控制的速度越大。其配置与 EFREQHold 有关,有四个档位可选。常见选择 1x 或 2x,即为 EFREQHold 的 1 或者 2 倍。

■ EFREQHold

启动的限制速度。其配置与 EFREQMin 有关,有四档选择。常用选择 4x 或 8x,即为 EFREQMin 的 4 倍 或者 8 倍。

4.5 Run 模块

此模块为运行相关参数,如下图所示。

Run									
DQ_KP	0.5	Stb_Inc	-		Q	1	<i>x</i> .	10	3
DQ_KI	0.03	Sta_Inc	-	4	(a)	à	-Q	i a	5
WKP	0.5								
WKI	0.006								
WOutMax					 	1	5 1	1.905	%

DQ_KP & DQ_KI

电流环 PI 调节器的比例系数和积分系数。影响电流环的响应和稳定性。

WKP & WKI

外环 PI 调节器的比例系数和积分系数。外环 PI 参数影响到电机速度响应,其调节前提是电流内环已稳定。若电流内环波动较大,需先将电流内环调节稳定再调试外环。

Stb_Inc

运行时外环爬坡增量。当电机启动或者改变档位时,为让系统更稳定,常采用将设定值以阶梯爬坡的形式赋值到目标值中。启动2秒后起作用。档位可选0-6和7。0-6依次表示为从慢到快,爬坡越快,系统响应越快,超调越严重。7表示输入指令不爬坡。用户可根据响应时间需求和超调情况设置爬坡增量档位的大小。

Sta_Inc

启动时外环爬坡增量。启动前2秒使用 Sta_Inc 做为爬坡增量,当超过2秒后,由 Stb_Inc 做为爬坡增量。位可选0-6和7。0-6 依次表示为从慢到快,爬坡越快,系统响应就越快,超调也会随之越严重。7表示输入指令不爬坡。用户可根据响应时间需求和超调情况设置爬坡增量档位的大小。

WOutMax

外环输出最大值。外环 PI 输出作为 Q 轴电流给定,为让系统超调小和更稳定,需设置外环输出最大值。 Woutmax 可选 0 ~ 63(0% ~ 50%),外环输出最大值为参考电压 Vref(5V)/放大倍数/采样电阻 *Woutmax。其设置要略高于电机运行最高转速所需的最大电流。

4.6 FG & RD 模块

此模块是FG与RD信号相关参数。

TOURD		-			
FGDIV	1x	•	FGMUL	1 x	•
FGRD_MD	FG	•			

FGDIV & FGMUL

FG信号分频系数和倍频系数。可以对FG信号进行分频和倍频,用于实现一个机械周期不同的 FG 输出信号。一个机械周期显示的FG个数 = Pole-Pairs(电机极对数)*FGMUL*FGDIV。

■ FGRD_MD

FG信号与RD信号模式选择。FG与RD管脚复用。选FG时第FG/RD脚输出FG信号。选RD时FG/RD脚输出RD信号,故障状态FG/RD脚输出高电平,其余状态输出低电平。当选择FG&RD时,正常运转时输出FG信号,故障状态时FG/RD脚输出高电平,正常调速关机时FG/RD脚输出低电平,如下图所示。选择FG&RDshift时,RD功能转移到FAULTN输出,FG/RD脚输出FG信号。

RIGC	L STOP H	1.00 s	Roll Mode	D	-1.50000000 s		
水平	PWM	调谏信号		4			耦合
ŢŢŢ					, , h internet	CH4	◀ 直 流
周期						Ľ	带宽限制
, ,	FG信						关闭
»%∓				命山北宣	in the state of the		探头
	B			削山八回			< 10X
上开时间							反相
+++	发生	E堵转					关闭
下降时间							幅度档位
_t t							粗调
正脉宽	544	انک		f	呆护恢复输出		单位
t‡		Bitt		1			 [A]
负脉宽	Freq>50.0 Hz	Max=5.80 V	Freq=****	Max=5.80 V	Max=****		
1 = 5	.00 V / 2	= 10.0 V / 3 =	5.00 V 4 = 500	mA			€

4.7 SpeedCtrl 模块

此模块是速度控制相关参数。

pdCtrlMode	PWM	•		

SpdCtrlMode

调速方式选择。可以选择Analog(模拟电压)、PWM、I2C和clock四种模式。散热风扇常用Analog和 PWM。

4.8 RSD 模块

StaticSpeed

顺逆风静止频率,右侧数字为设置的频率,单位:Hz。当电机正转,转速对应的频率大于顺逆风静止频

率时,直接切入角度闭环。当电机静止或正转转速对应的频率低于顺逆风静止频率时,电机以强拖方式 启动后再切入角度闭环。

4.9 Protection 模块

此模块为保护相关参数。

Protection	
FaultRecTimes	5 🔹
ocp_da	5 voltage: 0.098 v
Uvp_Thr	6.094
Ovp_Thr	17.266

FaultRecTimes

保护重启次数设置。0表示不重启,5表示重启5次,10表示重启10次,∞表示无限次数重启。

ocp_da

过流保护门限值设置。母线采样电阻信号输入到ICP引脚,不经过运放,直接与过流门限比较。用右侧计算出的voltage过流门限电压值除以采样电阻,可以算出过流峰值,实际电源上看到的过流值会比计算出来的过流峰值小,需要实际测试。过流保护后6.5秒根据FaultRecTimes设置决定是否重启,如下图所示。

Uvp_Thr

欠压保护值设置,单位:V。VCC电压低于欠压保护设置值时进入欠压保护。当进入欠压保护后电压恢复 到欠压保护值加0.5V以上时,若时间从进入欠压保护开始计时未到6.5秒,则芯片等待6.5秒后恢复输出, 如下图所示;若时间超出6.5秒,则芯片直接恢复输出,如下图所示。

Ovp_Thr

过压保护值设置,单位:V。VCC电压高于过压保护设置值时进入欠压保护。当进入过压保护后电压恢复 到过压保护值减0.5V以上时,若时间从进入过压保护开始计时未到6.5秒,则芯片等待6.5秒后恢复输出, 如下图所示;若时间超出6.5秒,则芯片直接恢复输出,如下图所示。

Application Note

4.10 Lock Protection 模块

此为堵转检测时间 Ton 时间设置

Ton time

Hall堵转检测时间Ton时间设置,如下图所示,单位:秒。设0为没有堵转保护,芯片会一直输出。进入 堵转保护后,等待6.5秒后根据FaultRecTimes设置决定是否重启,即Toff时间固定为6.5秒。

Fortior Tech 峰昭科技		Application Note
RIGOL STOP H 1.00 s	Roll Mode	D -40.000000ms
水 平 「□□		┫ 叽叽 < 15Hz 光 模
<u>り</u> ↓↓ ² 频率		
	off时间固定6.5	秒
	Freq>33.3 Hz Max=	=14.4 ∨ Max=13.6 ∨

4.11 Other Cfg 模块

此模块是一些非常用功能参数。

Other Cfg					
carrier_sel	25k	© 42k	🔘 16k	© 20k	
McOff_Sel	1.6s	© 3.2s	© 0s	© 6.5s	
thecomp_sel	Q				0
Dir_Inv	Oisabl	e	© Enable	e	
Limit_Sel	Q		1		0
cmp_modsel	3_2Hall I	C ,	·		

carrier_sel

载波频率设置。一般选择 25k 即可。

McOff_Sel

关机延迟关闭输出时间设置。可以设置关机时缓关闭输出,避免突然关闭输出续流导致母线电压过冲。 设置**0s**时直接关机直接关闭输出。

- Thecomp_sel
 滞后角度设置,最终角度滞后 Thecomp_sel*1.4°,可调整电机效率。
 - Dir_Inv

反向运转使能。可以调整电机运行转向。

- Limit_Sel 限速参数设置,设置值越大,触发LimitSpeed限速时限速调节响应越快。
- cmp_modsel
 比较器模式设置。此选项只是显示作用,自动根据 hall modsel 选项改变进行修改,无需主动进行设置。

4.12 CurveCfg1 模块

此模块是速度曲线模式相关参数。

CurveCfg1		
LimitSpeed 33	000	
PwmOffMode	Stop	MinSpeed
pwm_rev_en	Disable	© Enable
CurveEn/spd100	Oisable	© Enable

LimitSpeed

限制速度。可以通过配置限制速度来实现限制电机运行的最高速度。若不需要限速,将LimitSpeed设置 大于电机运行最高速度,接近速度基准即可。

pwmOffMode

PWMOffMode表示数字PWM占空比输入低于X_ON时,关闭输出或以设定的最低输出转动。选择 Stop表示关闭输出;选择MinSpeed表示以设定的最小输出转动。

选择MinSpeed时,当输入PWM低于等于X_ON时,以X_ON对应的速度运行。

pwm_rev_en

Disable 表示调速曲线为正比例曲线; Enable 表示调速曲线为反比例曲线。

■ CurveEn/spd100

当CurveEn/spd100选择为Enable,选择为速度闭环且Pwm_X98_En选择为Enable时,为98%以上为开 环运行,98%以下为速度闭环运行;Pwm_X98_En选择为Disable时,100%为开环运行,100%以下为速 度闭环运行。当选择为电压闭环时,为多段式速度曲线设置使能位。

4.13 CurveCfg2 模块

此模块是速度曲线相关参数。

CurveCfg2							
MinSpeed 3100			X_ON	Q	13	10.156	%
MaxSpeed 31000			Y_ON	<u></u>	0	0.000	%
Y_Max_Sel	0	100%	Y_25		8	6.299	%
Pwm_X98_En O Disable			Y_50	- 	16	12.598	%
XON0 Q	0	0.000 %	Y_75		16	12.598	%

MinSpeed

速度闭环下,速度曲线最小速度。只在速度闭环下有效。

MaxSpeed

速度闭环下,速度曲线最大速度。只在速度闭环下有效。

Y_Max_Sel

电压环下,100%对应输出电压设置。只在电压闭环下有效。设置输入98%以上或100%(由Pwm_X98_En 设置)时输出的占空比大小。选择0对应输出100%,选择7对应输出44.643%,数值越大,输出的占空比越小。

Pwm_X98_En

输出最大对应的输入数字PWM占空比值,选择Disable表示对应输入100%时输出最大;选择Enable表示 对应输入大于等于98%时输出最大。当在速度闭环下,CurveEn/spd100选择Enable并且Pwm_X98_En 选择为Enable时,为98%以上速度开环曲线对应的输出duty。

XON0

低占空比全速运行设置。输入pwm低于设置值时电机以MaxSpeed或MaxCurrent运行。可设置0%到 24%,设置0%该功能无效。此功能在电压环模式下无效。

注:该设置值不可大于X_ON设置值。

X_ON

速度曲线启动点设置。当调速 duty 高于此参数对应 duty 电机将启动运转。滞回为 0.8%

■ Y_ON

仅在 ControlMode 选择 VoltageLoop 下有效,决定 X_ON 点对应的输出 duty。

Y_25/Y_50/Y_75

仅在 ControlMode 选择 VoltageLoop 下有效,分别决定 25%、50%和 75%时对应输出 duty。

5 方案调试难点&解决方法

恒功率调试				
常见问题	解决方法			
启动一直有异常或者启动卡顿不顺畅	 1. 检查霍尔安装位置与 UVW 出线位置是否按照手册说明放置; 2. 测量霍尔极性是否正确,调整 hall_rev_en 参数选 Disable 或者选 Enable; 3. 调大启动电流 StartCurrent; 4. 调整 EFREQAcc, CloSpeed, EFREQHold。 			
逆风能力弱, 高速逆风时启动失败	1. 调大启动电流 StartCurrent。			
逆风启动时冲电流	1. 调小启动电流 StartCurrent; 2. 调试外环的 PI, 参数 WKP, WKI。			
电机速度响应较慢	1. 调大外环的 PI,参数 WKP, WKI; 2. 调大加速度 Sta_Inc 与 Stb_Inc。			
电机运行时转速电流不稳定	调节外环的 PI,参数 WKP, WKI。			
相电流不正弦	 检查电机参数是否填写正确; 确认电机反电动势是否正弦,如是方波充磁,电机反电动势不正弦,则相电流波形无法十分正弦; 调整 ATOBW,内环 PI 参数 DQ_KP, DQ_Ki,外环 PI 参数 WKP,WKI; 调大采样时刻 SampleTime,采样窗口 TSMIN。 			
转速无法提高	 相电流波形稳定无波动的情况下,通过观测寄存器 UQ 是否饱和接近 0x7FFF; UQ 寄存器未饱和,检查是否因为电流限制导致转速无法提高,调大 Woutmax 值。检查是否因为限速导致转速无法提高,调大 LimitSpeed 值与 MaxSpeed 值; UQ 如果饱和,可增加 LeadAngle 稍微提高转速; 以上还是达不到要求时,是电机自身能力达不到需求,可让客户修改电机。 			

Application Note

6 技术支持

在使用过程中有任何问题,可以联系本公司市场部同事,会分配对应工程师提供技术支持。

7 修改记录

版本号	修改详细内容说明	生效日期	修订者
V1.0	初稿	2023/01/12	梁耀雄
V1. 1	 修改格式 增加图片描述 补充 4.1 章节 hall_sta_op 描述 	2023/06/20	李佳妮
V1.2	 补充 2.1.7 章节霍尔电路描述 补充 4.1 章节霍尔参数说明 增加 4.9 章节保护类型图片说明 增加 4.10 章节堵转保护说明 	2023/08/08	梁耀雄

版权说明

版权所有©峰岹科技(深圳)股份有限公司(以下简称:峰岹科技)。

为改进设计和/或性能,峰岹科技保留对本文档所描述或包含的产品(包括电路、标准元件和/或软件)进行更改的 权利。本文档中包含的信息供峰岹科技的客户进行一般性使用。峰岹科技的客户应确保采取适当行动,以使其对 峰岹科技产品的使用不侵犯任何专利。峰岹科技尊重第三方的有效专利权,不侵犯或协助他人侵犯该等权利。 本文档版权归峰岹科技所有,未经峰岹科技明确书面许可,任何单位及个人不得以任何形式或方式(如电子、机 械、磁性、光学、化学、手工操作或其他任何方式),对本文档任何内容进行复制、传播、抄录、存储于检索系 统或翻译为任何语种,亦不得更改或删除本内容副本中的任何版权或其他声明信息。

峰岹科技(深圳)股份有限公司 深圳市南山区科技中二路深圳软件园二期 11 栋 2 楼 203 邮编: 518057 电话: 0755-26867710 传真: 0755-26867715 网址: www.fortiortech.com

本文件所载内容 峰岹科技(深圳)股份有限公司版权所有,保留一切权力。