

无感工业风机调试手册

三相电机控制 MCU FU6812L2

峰岹科技(深圳)股份有限公司

目录

1概述	
2硬件原理与参数配置	5
2.1硬件原理	5
2.1.1 电源部分	6
2.1.2 芯片主体	6
2.1.3 功率驱动部分	7
2.1.4 运放配置电路	7
2.1.5 母线电压采样	8
3软件原理	9
3.1 电机状态机流程图	9
3.2 程序流程图	
3.3 程序说明	
3.3.1 Main 函数:	
3.3.2 1ms 定时中断	
3.3.3 FOC 中断	
3.3.4 CMP3 中断	
3.3.5 Timer3 中断	
4 调试步骤	
4.1 配置电机参数	
4.1.1 电机参数	
4.1.2 电机参数测量方法	
4.1.3 对应程序	14
4.2确认芯片内部相关数据配置	
4.3 确认硬件参数	
4.4 保护参数设置	
4.5 启动参数配置	
4.6 硬件驱动电路检测	
4.7 调试电流环	
4.8 增加外部环路	
4.9 增加调速等功能	
4.10可靠性测试	
4.10.1 功能可靠性	
4.10.2 保护可靠性	
4 10 3 启动稳定性	

Application Note

功能介绍
5.1 启动调试
5.1.1 Omega 启动
5.1.2 启动常见问题&解决方式24
5.2 保护介绍
5.2.1 过流保护
5.2.2 电压保护
5.2.3 缺相保护
5.2.4 堵转保护
5.2.5 偏置电压保护
5.2.6 其他保护
其他常见功能调试
6.1限功率功能
6.2 限流功能
7 方案调试难点&解决方法
修改记录
9版权说明

1 概述

本调试手册详细介绍了如何使用峰岹科技的 FU6812L2 芯片,对低压直流无刷工业风机电机实现无霍尔的 FOC 驱动控制。阅读手册时,第二章节硬件原理跟第三章节软件原理可以大致先浏览一遍,重点放在第四章调试 步骤。

涉及的软/硬件

软/硬件和模块	名称	章节	备注
软件	FU6812L2 工业风机应用方案标准程序	全部	调试需在该工程软件上进行
硬件		全部	调试需在该硬件上进行

2 硬件原理与参数配置

2.1 硬件原理

使用方式:

该板子作为工业风机的驱动板,直接上电即可使用。

注意事项:

根据具体电机电压和电流大小,合理配置母线电压比,运放放大倍数,采样电阻,反电动势检测电路分 压比。

2.1.1 电源部分

2.1.2 芯片主体

使用方式:

FU6812L2应用于中高压 6-NMOSFET 驱动应用。

2.1.3 功率驱动部分

注意事项:

最大电流情况下,采样电阻功率不能超过额定功率的80%。

2.1.4 运放配置电路

注意事项:

- 1. C9参数不可调整,精度要求 10%;
- 2. R42、R43、R44、R55 需要用 1%精度电阻;
- 3. 放大倍数 = R43/R42 = R55/R44;
- 4. 最大采样电流 = (VREF 2.5)/放大倍数/采样电阻值。

2.1.5 母线电压采样

注意事项:

- 1. R27、C23参数不可调整;
- 2. R25、R30 需要用 1%精度电阻;
- 3. 最大采样电压 = (R25 + R30)/(R30)*VREF;
- 4. 最大采样电压一般选择为2倍的最大应用电压,OVP此处的电压需要低于0.8*VREF。

3 软件原理

3.1 电机状态机流程图

图 3-1 电机状态机流程图

如图所示, 电机状态机分为三条路径:

- 1. 运行: mcReady -> mcInit -> mcTailWind -> mcPosiCheck -> mcAlign -> mcStart -> mcRun;
- 停机: mcInit、mcTailWind、mcPosiCheck、mcAlign、mcStart、mcRun 状态下如果检测到关机信 号则会切入到 mcStop 状态进行降速关机;
- 3. 故障: 所有状态下发生故障均会跳转至 mcFault 状态,在 mcFault 状态将不再进行故障检测,因此不 支持多故障并发的同时上报。

说明:

- 1. mcReady: 准备状态,等待开机命令,如果开机使能则跳转到 mcInit 状态;
- 2. mcInit: 相关变量和 PI 初始化,关闭电流,母线采样的外部 ADC 触发,然后跳转到下一状态;
- mcTailWind: 顺逆风检测状态,检测到顺风时,直接切到 mcRun 状态运行;检测到逆风时,先刹车 再往下执行(工业风机没有逆风的情况);检测到静止时,往下执行;

- 4. mcPosiCheck: 初始位置检测状态, 检测电机的初始位置, 再正常启动;
- 5. mcAlign: 预定位状态,该状态下控制器输出恒定的电流将电机强行拖动到固定的角度上。定位结束则跳入下一个状态 mcStart;
- mcStart: 启动状态,该状态主要用于电机的启动代码配置,对相关寄存器代码与变量进行配置之后则转入下一个状态 mcRun。电机启动过程由 ME 内核实现;
- 7. mcRun: 运行状态,该状态包含: 电机启动阶段,电机运行阶段,电机速度的控制在该状态进行;
- mcStop: 停机状态,该状态用于停机操作,当速度降低到比较低的转速之后关闭输出,切入到 mcReady 状态,等待新的开机命令;
- mcFault: 错误状态,当发生保护时,程序会记录错误源并且状态机会跳转到错误状态关机保护,当 错误源被清掉时,会切入到 mcReady 状态,等待新的开机命令。

注意事项:

- 1. 电机状态机一共分为 9 个状态,状态之间只允许固定的状态跳转 例如: mcReady 状态只能向 mcInit 和 mcFault 状态跳转;
- 特别的,mcTailWind,mcAlign两个状态都有使能位,当没使能时,直接跳转到下一个状态。例如:mcAlign没使能时,mcPosiCheck直接跳转到mcStart状态。

3.2 程序流程图

3.3 程序说明

3.3.1 Main 函数:

程序初始化 -> 偏置电压检测 GetCurrentOffset() + 电机运行控制 MC_Control() + 1ms 定时处理 TickCycle_1ms()等;

3.3.2 1ms 定时中断

产生 1ms 标志位,通过该标志位在主函数中调用 TickCycle_1ms()函数, TickCycle_1ms()函数主要包含了调速、故障保护检测、母线电流、母线电压采集等相关处理,调用子函数如下:

Speed_response();	// 环路控制函数
Fault_Detection();	// 故障检测
LED_Display ();	// LED 故障警报提示

V1.1

TargetRef_Process ();//调速接口ATORamp ();// 电机启动 ATO 爬坡控制FGOutput ();// FG 输出CloseLoop Parameter ();//闭环运行后相关参数更新处理

3.3.3 FOC 中断

FOC 中断,即载波中断,主要处理一些时序比较快的程序,如调用除法器、过流处理等。

3.3.4 CMP3 中断

比较器 3 中断主要是处理硬件过流保护,具体原理可参考<u>章节 5.2.1。</u>

3.3.5 Timer3 中断

Timer3 中断主要是 PWM 占空比的获取,通过该中断获取到 PWM 的高电平 TIM3__DR 跟 PWM 的周期值 TIM3__ARR,之后再通过计算算出 PWM 的占空比大小。

4 调试步骤

4.1 配置电机参数

4.1.1 电机参数

- 1. 电机极对数 Pole_Pairs;
- 2. 电机的相电阻 RS、相电感 LD、LQ,以及反电动势常数 Ke;
- 3. 电机速度基准,速度基准 MOTOR_SPEED_BASE = 2*电机额定转速。

4.1.2 电机参数测量方法

- 1. 极对数 Pole_Pairs: 电机设计时需给出的参数;
- 2. 相电阻 Rs: 万用表或者电桥测量电机两相线电阻 RL,相电阻 Rs = RL/2;
- 3. 相电感 Ls: 电桥测 1KHz 频率下的两相线电感 LL, 相电感 Ls = LL/2; LD = LQ = Ls;
- 反电动势常数 Ke: 示波器的探头接电机的一相,地接电机另外两相中的某一相,转动负载,测出反电动势波形。取中间的一个正弦波,测量其峰峰值 KeVpp 和周期 KeT。计算公式如下:

$$Ke = Pole_Pairs * \frac{KeVpp * KeT}{207.846}$$

示例,测量反电动势波形如下:

图 4-1 反电动势波形

测量峰峰值 KeVpp 为 33.2V,周期 KeT 为 142ms,极对数 Pole_Pairs 为 4,则:

反电动势Ke = 4 * 33.2*142/207.846 = 90.73

5. 速度基准 MOTOR_SPEED_BASE: 速度基准一般设置为电机最大转速的 2 倍左右, 该值会影响启动等性能, 一般需要提前定好之后, 后面不要轻易改动。

4.1.3 对应程序

	stomer.h		
35 E	/*		
36	电	机参数值配置	
37			*/
38	#define R	(1.0)	//相电感对应系数值
39	<pre>#define Pole_Pairs</pre>	(4.0)	// 极对数
40	#define RS	(1.55)	// 相电阻,测量两根相线之间电阻/2,单位:Q
41	#define LD	(0.00279*R)	// D轴相电感,测量两根相线之间电感/2,单位:H
42	#define LQ	(0.00279*R)	// Q轴相电感,测量两根相线之间电感/2,单位:H
43	// 若选择AO自适应观测器 则无需填写Ke		
44	#define KeVpp	(6.7)	// 反电动势测量的峰峰值,单位:v
45	#define KeT	(34.2)	// 反电动势测量的周期,单位:ms
46	#define Ke	(Pole_Pairs * KeVpp * KeT / 207.846)	// 反电动势常数,单位:V/KRPM
47			
48	#define MOTOR SPEED BASE	(15000.0)	// (RPM) 速度基准,建议电机空载最大转速的2倍
49			

4.2 确认芯片内部相关数据配置

	stomer.h				
18 - 19 20]/*芯)				*/
21 22 23	/*PWM Parameter*/ #define PWM_FREQUENCY	(20.0)	// (1	Hz)	载波频率
24 25 26	/*deadtime Parameter*/ #define PWM_DEADTIME	(1.0)	// (1	IS)	死区时间
27 28 29	/*single resistor sample Parameter*/ #define MIN_WIND_TIME	(PWM_DEADTIME + 1.0)	// (1	IS)	单电阻最小采样窗口,建议值死区时间+0.9us,不能>载波周期/16!!!
30 31 32	/*正反转设置 CW:正转 CCW:反转*/ #define FRMODE	(CCW)			

注意事项:

- 载波频率一般需要设置为最大电周期 10 倍左右,载波频率会影响启动,MOS 温升等等,调试之前 需要选择好合适的载波频率。工业风机一般默认 20K 即可;
- 2. 死区大小根据实际的 MOS 开关速度设置,保证没有直通风险;
- 最小采样窗口设置,最小窗口最小需要大于 2 倍的死区,小于载波周期的 1/16,即 1000/16/PWM_FREQUENCY > MIN_WIND_TIME > 2*PWM_DEADTIME;
- 4. 正反转设置,根据实际接线设置,如果电机反转了,则直接修改 FRMODE 配置即可。

4.3 确认硬件参数

- 1. 通过电机的电压范围和功率范围确认母线分压比、采样电阻值、放大倍数。
- 2. 电阻阻值跟放大倍数选取规则:
 - 1) 母线分压电阻:
 - 分压比不宜太小:一般建议最大采集电压为 0.8*VREF,如某电机的最大电压为 30V, ADC 基准 VREF 为 4.5V,此时分压比建议不低于: 30/0.8/4.5 = 8.33;如果分压比太小,如分压比为 5,则 30V 时,经过分压后到 AD 口的电压为 6V,此时溢出了。

- 分压比不宜太大:分压比太大的话会导致 AD 采集电压精度不够,如最大电压为 30V,当分压比 为 40 时,经过 AD 口的电压为 30V/40V = 0.75V,28V 时为 0.7V,此时精度比较低,而且 AD 还有 4.5 0.75 = 3.75V 的余量。
- 2) 采样电阻与放大倍数:

最大采集电流 = VREF/HW_RSHUNT/HW_AMPGAIN;这里要注意的是,最大采集电流不是电源上显示的电流(电源上显示的是滤波后的),而是流经采样电阻的电流。

- 采样电阻不宜太大:太大的话容易导致采样溢出,或者本身的功率超过范围;2512 封装的采样电阻常见功率为 1W 或者 2W,1206 封装电阻的功率常见位 1/4W,选择时,要注意流经采样电阻的功率 I²R 不要超过该功率。
- 采样电阻不宜太小,太小的话精度不够
- 放大倍数结合采样电阻调整,先确定了采样电阻,再去调整放大倍数
- 其中,HW RSHUNT 为采样电阻,HW AMPGAIN 为放大倍数
- 3. 母线分压比、采样电阻值、放大倍数对应填写到程序中(在 Customer.h 文件)

<u> </u>	stomer.n								_		
52 - 53 54	/*		硬件相关参数	位配置					*/		
55	/*PWM	1 high or low level M	lode*/								
57 5 58 59	/* PW Hi	MM_Level_Mode :驱动有 igh_Level :上下桥									
60 61 62	Lo UF UF	ow_Level :上下桥 ?_H_DOWN_L :上桥臂 ? L_DOWN_H :上桥臂	·驱动电平均低有效 '高电平有效,下桥臂低电 '低电平有效,下桥臂高电	- 平有效 - 平有效							
63 64	#defi	ne PWM_Level_Mode	(UP_H_DC	DWN_L)					*/		
66	/*har	dware current sample	Parameter*/								
68 69 70	AM AM AM	NP_MODE :运放模式 NP_PGA_DUAL :运放PGA机 NP_NOMAL :运放非PG	配置 莫式,放大倍数由内部配 [4模式,放大倍数由外部]	置 記置					*/		
72 73	#defi	ne AMP_MODE	(AMP_NO)	IAL)					~/		
74 - 75 76 77 78	* HW AM AM AM	N_AMPGAIN_Choose MP2x MP4x MP8x	:运放放大倍数选择,运) :运放PGA模式X2倍 :运放PGA模式X4倍 :运放PGA模式X4倍	波PGA模式时可选	AMP2x/AMP4x/AMP	8x/AMP	16x,否则	按实	 际放ナ	に倍数填写	
79 80	AM 其	1P16x 《他数字	:运放PGA模式X16倍 :运放非PGA模式,按实际	放大倍数填写							
81 82	#defi	ne HW_AMPGAIN_Choose	(5.0)			// 运	放放大倍	 数	*/		
84	/*运放	放采样电阻及放大倍数*	1								
85 86	<pre>#defi #defi</pre>	ne HW_RSHUNTO	(0.1)			// (Ω // AM) AMPO端 Po是否接	i米梓⊓ 偏置电	电阻 (压,o	,无偏置电)	玉;1,有偏置电压
87 88	#defi	ne HW RSHUNT	(0,1)			// (Q	AMPL	AMP2	端采材	É电阻	
	Custome										
90	/*1	VREF电压选择*/									
91	E/* ·	VREF3 0 :3V									
93		VREF4_0 :4V									
94	E	VREF4_5 :4.5V	7								
95		VREF5_0 :5V									*/
97	#de	efine HW_ADC_VREF		(VREF5_0)				11 ((V)	ADC参考	电压
98											
100	F/*	VREF OUT EN : TH	芯片P3.5引脚有引出:	来的, 儒强制同	记置为基准电乐v	REF	外输出的	前能:	否则	Disable	
101											*/
102	#de	efine VREF_OUT_EN		(Disable)				// 1	基准	电压VREF)	对外输出使能
103	#de	efine VHALF_OUT_EN	1	(Disable)				// V	HALE	输出使能	ŧ
105	5										
100	/*	母线电压采样分压电	sample Parameter*/ 路参数*/								
108	#de	efine RV1		(47.0)				11 ((kQ)	母线电压	上分压电阻1
109	#de	efine RV2		(0.0)				11 ((k2)	母线电压	上分压电阻2
110	#de	erine RV3		(3.0)				// ((KQ)	可或电压	下方压电阻3

4.4 保护参数设置

- 1. 电流保护设置:
 - 硬件过流:根据功率器件的最大电流值,设置硬件过流保护值,一般硬件过流保护值
 OverHardcurrentValue设置大于母线最大电流值,小于功率器件最大电流值。
 - 软件过流: OverSoftCurrentValue 一般设置比硬件过流小一点即可,需设置小于电机的退磁电流,软件 过流为软件触发,保护时间不及硬件过流。
- 2. 设置过欠压保护以及保护恢复参数,详细设置参考章节5.2.2;
- 关闭上述保护的其他保护,防止启动的时候误触发,后面添加需要的保护再确认,其中过流保护是一定要 开的,因此没有使能位;
- 4. 将参数对应填写到程序中(在 Protect.h 文件)。

	stomer.n Protect.n		
19	<pre>#define HardwareCurrent Protect</pre>	(Hardware CMP Protect)	// 硬件过流保护方式选择
20	<pre>#define OverHardcurrentValue</pre>	(4.5)	// (A) DAC模式下的硬件过流值,不能>最大采样电流!!!
21			
22	/*软件过流保护*/		
23	<pre>#define OverSoftCurrentValue</pre>	I_Value(4.0)	// (A) 软件过流值,不能>最大采样电流!!!
24			
25	/*过流恢复*/		
26	<pre>#define CurrentRecoverEnable</pre>	(1)	// 过流保护恢复使能位, 0, 不使能: 1, 使能
27	<pre>#define OverCurrentRecoverTime</pre>	(3000)	// (ms) 过流保护恢复时间
28	<pre>#define OVCurrentTimesRestartTimes</pre>	(5)	// 软硬件过流保护重启次数,最大255,单位: 次
29	All THE LAND AND AND AND AND AND		
30	/*偏置电压保护恢复*/		
31	<pre>#define GetCurrentOffsetValue</pre>	_Q14(0.20)	// (单位:100%)偏置电压保护误差范围,超过该范围保护
32	<pre>#define IbusOffsetRecoverEnable</pre>	(1)	// 偏置电压保护恢复使能位, 0, 不使能; 1, 使能
33	<pre>#define IbusOffsetRecoverTime</pre>	(100)	// (ms) 偏置电压保护恢复时间
34	<pre>#define IbusOffsetRestartTimes</pre>	(5)	// 偏置电压保护重启次数,最大255,单位: 次
35			
36	/* 过欠压保护*/		
37	<pre>#define VoltageProtectEnable</pre>	(1)	// 电压保护, 0, 不便能; 1, 便能
38	<pre>#define Over_Protect_Voltage</pre>	(46)	// (V) 直流电压过压保护值
39	<pre>#define Over_Recover_Vlotage</pre>	(44)	// (♡) 直流电压过压保护恢复值
40	<pre>#define Under_Protect_Voltage</pre>	(28)	// (V) 真流电压欠压保护值
41	<pre>#define Under_Recover_Vlotage</pre>	(30)	// (Ⅴ) 真流电压欠压保护恢复值
42			
43	/* 埴特保护*/		
44	<pre>#define StallProtectEnable</pre>	(1)	// 堵转保护,0,个使能;1,使能
45	<pre>#define StartRecoverTime</pre>	(20)	// (ms) 后初保护延时里后时间
46	<pre>#define StallRecoverTime</pre>	(1000)	// (ms) 诸转保护延时里后时间
47	<pre>#define StallProtectRestartTimes</pre>	(5)	// 項转保护里后伏奴,取天255,単位: 次
48			
49	<pre>#define EsThresholdValue0</pre>	(15.0)	// (RPM) 万法1,ES <esthresholdvalue0 td="" 飓友<=""></esthresholdvalue0>
50			
51	#define EsThresholdValuel	(100.0)	// (RPM) 刀法1,佔异转逐>EsThresholdSpeedl且ES <esthresholdvaluel td="" 肥反<=""></esthresholdvaluel>
52	<pre>#define EsThresholdSpeed1</pre>	S_Value(3000)	// (RFM) 刀法1,怕异转速>EsThresholdSpeedl且ES <esthresholdvaluel td="" 肥友<=""></esthresholdvaluel>
53			
54	#define STALL_MAX_SPEED	<pre>S_Value(9000.0)</pre>	// (RPM) 刀 法2,位身技速>MOTOR SPEED STAL MAX RPM 肥友
55	#define STALL_MIN_SPEED	5_Value(200.0)	// (RPM) 方法2,佔昇转速 <motor_speed_stal_min_rpm td="" 肥反<=""></motor_speed_stal_min_rpm>
56			
57	/ * 四代/1日11末177 * /		

4.5 启动参数配置

启动参数都先采用自带的**默认参数**,等启动有问题或者启动不顺的时候再做调整。启动常见的问题即参数调

整可以参考<u>章节 5.1。</u>

192	/***启动电流****/			
193	<pre>#define ID_Start_CURRENT</pre>	I_Value(0.0)	11	(A) D轴启动电流
194	<pre>#define IQ_Start_CURRENT</pre>	I_Value(1.0)	11	(A) Q轴第一拍启动电流
195	<pre>#define IQ_Start_CURRENT_END</pre>	I_Value(2.0)	11	(A) 切外环前Q轴最大限制电流
196				
197	/***运行电流****/			
198	<pre>#define ID_RUN_CURRENT</pre>	I_Value(0.0)	11	(A) D轴运行电流
199	#define IQ RUN CURRENT	I Value(0.5)	11	(A) Q轴运行电流

1. 启动电流: 一般 ID_Start_CURRENT 固定设置为 0, IQ_Start_CURRENT 根据实际电机设置确认; 注意事项:

IQ_Start_CURRENT,为启动时的第一拍电流,不能过小否则启动力矩太小导致启动失败;也不能 过大否则启动过冲还会引入启动噪声。

IQ_Start_CURRENT_END,为启动给第一拍电流后递增的最大电流,即切外环前Q 轴最大限制电流,需要比 IQ_Start_CURRENT 大一些以克服启动阻力。

- 运行电流: IQ_RUN_CURRENT 只决定顺风启动一瞬间的电流。通过实际观测相电流波形,可以适当调整 IQ_RUN_CURRENT 解决切换电流不平滑;
- 3. 启动 ATO:由于在较低转速下估算器输出存在误差,此时需要设置 ATO_BW(速度带宽滤波值),以限制 FOC 估算器的最大转速输出;

🛄 <u>Cu</u>	stomer.h Protect.h		
203	/*******Omega启动的参数******	***/	
204	#define ATO_BW	(0.0)	// 观测器带宽的滤波值,经典值为1.0-200.0
205	#define ATO_BW_RUN	(10.0)	
206	<pre>#define ATO_BW_RUN1</pre>	(25.0)	
207	#define ATO_BW_RUN2	(35.0)	
208	<pre>#define ATO_BW_RUN3</pre>	(45.0)	
209	<pre>#define ATO_BW_RUN4</pre>	(55.0)	
210	<pre>#define ATO_BW_RUN5</pre>	(80.0)	

注意事项:

对于工业风机而言,启动的前3个ATO影响比较明显,需要根据实际情况调整。一般第一个ATO_BW直接给0。

4. SMO 运行最小转速 MOTOR_SPEED_SMOMIN_RPM;

<u>Cu</u>	stomer.h Protect.h			
224				
225	<pre>#define MOTOR_SPEED_SMOMIN_RPM</pre>	(150.0)	// (RP	M) SMO运行最小转速

注意事项:

MOTOR SPEED SMOMIN RPM 需设置为小于最小运行转速值,对启动性能影响较大

5. Omega 启动参数设置,影响启动的电流频率,即电机的启动加速度。

注意事项:

- 1) Motor_Omega_Ramp_ACC 参考值范围 1~20
- 2) MOTOR_OMEGA_ACC_MIN 参考值范围 0~100
- 3) MOTOR_OMEGA_ACC_END 参考值范围 100~500
- 4) MOTOR_LOOP_RPM 需要大于 MOTOR_OMEGA_ACC_END,参考值范围 100~500
- 6. 电流环 PI: 电流环 PI 分启动的电流环 PI 跟运行时的电流环 PI;

Customer.h Protect.h		
188 /*电流环参数设置值 189 <mark>#define</mark> DQKPStart 190 #define DQKIStart	_Q12(1.0) _Q15(0.01)	*/ // 启动时DO轴电流环кр // 启动时DO轴电流环кI
Customer.h Protect.h		
249 #define DQKP 250 #define DQKI	_Q12(1.0) _Q15(0.01)	// 运行时DO轴KP // 运行时DQ轴KI

注意事项:

- 1) 启动的电流环 PI,影响电机的启动;
- 2) 运行的电流环 PI,影响电流的稳定性,也影响效率;
- 3) DQKP 建议范围 0.1 ~ 3.0;
- 4) DQKI 建议范围 0.001~0.05。
- 7. DQ 轴最大输出限幅: D 轴影响电机的磁通, Q 轴影响电机的转矩;

🛄 <u>Cu</u>	istomer.h Protect.h					
252	/* D轴参数设置 */					
253	<pre>#define DOUTMAX</pre>	Q15(0.6)	- 77	D轴最大限幅值,	单位:	输出占空比
254	#define DOUTMIN	Q15(-0.6)	- 77	D轴最小限幅值,	单位:	输出占空比
255						
256	│/* Q轴参数设置,默认O.99即可 */					
257	#define QOUTMAX	Q15(0.99)	- 11	Q轴最大限幅值,	单位:	输出占空比
258	<pre>#define QOUTMIN</pre>	Q15(-0.99)	- 11	o轴最小限幅值,	单位:	输出占空比
0.5.0		-				

注意事项:

- 1) FOC__UQ 反馈电机是否已经输出饱和;
- 2) FOC__UD 正得越多表示角度越超前,可以通过增加补偿角(FOC_THECOMP)让电机角度超前,此 时能提升最大转速,FOC__UD 是一个正值;
- **3)** 过多的超前角度,会导致关机时候电流过冲,可以通过低压预警关机处理,也可以通过快速欠压保 护处理;
- 4) 过多的超前角度,会导致效率变差,相同功率下,相电流幅值更大,需要合理设置补偿角度。

4.6 硬件驱动电路检测

🛄 <u>Cu</u>	stomer.h Protect.h	
112 E	/* IPMState : IPMtest	
115 116	NormalRun	:正常按电机状态机运行 */
117	<pre>#define IPMState</pre>	(NormalRun)
<u>Cu</u>	stomer.h Protect.h	
322 🗄]/*	
323	SPEED_MODE	:调速模式选择
324	NONEMODE	:直接给定转速,不调速
325	PWMMODE	:Duty调速,需初始化对应定时器
326	SREFMODE	:模拟调速,需使能对应AD口
327	UARTMODE	:UART调速
328		*/
329	<pre>#define SPEED_MO</pre>	DE (SREFMODE)

将IPMState设置为IPMtest,SPEED_MODE选择NONEMODE开机,不接电机,若UVW三相有固定的PWM 波形输出,则硬件驱动电路正常,否则需要查找硬件问题。

4.7 调试电流环

1. 将闭环方式选择为 IQ_LOOP_CONTROL;

Fortior Tech 峰昭科技			Application Note		
	294	stomer.h Protect.h			
	295		调速相关参数值配置		
	296	/+		*/	
	297	Motor Speed Control Mode			
	299	IQ LOOP CONTROL	:恒相电流		
	300	POWER_LOOP_CONTROL	:功率环		
	301	SPEED_LOOP_CONTROL	:速度环		
	302	UQ_LOOP_CONTROL	:电压环		
	303	CURRENT_LOOP_CONTROL	:恒母线电流		
	304			*/	
	305	<pre>#define Motor_Speed_Control_M</pre>	Iode (IQ_LOOP_CONTROL	.)	

2. 调速方式先选为直接给定值,调整给定值 Motor_Max_IQ 的大小,以此来控制电流环的电流大小(注意给的是相电流的值,而且因为选的调速方式是直接给定的,程序只认 Motor_Max_IQ,此时 Motor_Min_IQ

定兀	XX 时);		
🔜 <u>Cu</u>	stomer.h Protect.h		
322 -]/*		
323	SPEED MODE	:调速模式选择	
324	NONEMODE	:直接给定转速,不调速	
325	PWMMODE	:Duty调速,需初始化对应定时器	
326	SREFMODE	:模拟调速,需使能对应AD口	
327	UARTMODE	:UART调速	
328			*/
329	<pre>#define SPEED_MODE</pre>	(NONEMODE)	
🛄 <u>Cu</u>	stomer.h Protect.h		
319	#define Motor_Max_IQ	I_Value(3.0)	//o轴电流最大值, 恒相电流控制时配置
320	#define Motor Min IQ	I Value(0.15)	//Q轴电流最小值,恒相电流控制时配置

- 3. 烧录程序,上电启动电机,当电机启动不起来时(目前一般都能起来),通过调整以下启动参数:
 - 启动电流: IQ_Start_CURRENT,电流不够时电机起不来,可以慢慢增加,也不要一次性给太大
 - 影响启动频率的 ATO、Omega 和 MOTOR_SPEED_SMOMIN_RPM 的参数等等
- 4. 当上电,电机能跑后,加大电流环给定值,达到客户目标功率。
- 5. 确认电流环情况下最大功率、转速
- 6. 记录最大功率下的 Q 轴输出 duty 值 mcFocCtrl.UqFlt(该值即是电压环时的给定最大参考值),以及此时设置的相电流 Motor Max IQ 大小(该值可作为外环 SOUTMAX 的参考值)。
- 注:母线电流采集的 AD 口要对应上,要根据实际硬件电路去修改。具体位置如下图

Customer.	Protect.h AddFunction.c
1309 🚊	<pre>#if ((Current_LIMIT_ENABLE) (Motor_Speed_Control_Mode == CURRENT_LOOP_CONTROL))</pre>
1310 📋	
1311	/*****RC母线电流采样,限流或恒母线电流用*****/
1312	AdcSampleValue.ADCIbus = ADC5 DR << 3;
1313	if(AdcSampleValue.ADCIbus > mcCurOffset.Iw_busOffset)
1314 🚊	{
1315	AdcSampleValue.ADCIbus = AdcSampleValue.ADCIbus - mcCurOffset.Iw_busOffset;
1316 -	}
1317	else
1318 🚊	(
1319	AdcSampleValue.ADCIbus = 0;
1320 -	}
1321	<pre>mcFocCtrl.mcIbusFlt = LPFFunction(AdcSampleValue.ADCIbus,mcFocCtrl.mcIbusFlt,50);</pre>
1322 -	}
1323	\$endif

常见问题及解决办法:

1. 加大电流给定,还是达不到客户要的最大功率值;

解决:电流波形正弦的情况下,通过观测 FOC__UQ 是否饱和,如果饱和,且 FOC__UD 值比较大的话,通过调整补偿角 FOC_THECOMP(正负都调整看看)确认是否能达到客户需求。

- 运行过程中,触发过流保护;
 解决:看相电流波形是否异常,看是否是设定值比较小正常触发了过流保护。如果没异常的情况下, 查看硬件布线等是否有问题。
- 相电流波形有抖动;
 解决:调整电流环 PI(即 DQKP, DQKI)的值,电流环 PI 和电流采样对于电流波形的稳定性影响比较大。

4.8 增加外部环路

1. 一般工业风机都是用的电压环,因此将环路选择为电压环;

	Customer.h Protect.h AddFunction	c
291	7 🖻 / *	
298	8 Motor Speed Control Mode	:闭环方式选择
299	IQ LOOP CONTROL	:恒相电流
300	POWER LOOP CONTROL	:功率环
301	1 SPEED LOOP CONTROL	:速度环
302	2 UQ LOOP CONTROL	:电压环
303	3 CURRENT LOOP CONTROL	:恒母线电流
304	4	*/
305	define Motor Speed Control M	(ode (UO LOOP CONTROL)

 设置调速曲线的最大值,跟 SOUTMAX 的值,这两个值在<u>章节 4.7</u>最后一步已经有记录的参考值,其中 SOUTMAX 需要在记录的参考值的基础上再增加一点,以防电压上升时电流还要进一步上升,要有足够 的上升空间。Motor Min UQ 为曲线的最小输出 duty,可根据客户实际需要设定;

		, , , , , , , , , , , , , , , , , , ,	
1	Customer.h Customer.h Customer.h Customer.h		
	266 #define SOUTMAX 267 #define SOUTMIN	I_Value(3.0) I_Value(0.01)	// (A) 外环PI输出最大限幅值 // (A) 外环PI输出最小限幅值
	Customer.h Protect.h AddFunction.c		
3	13 #define Motor_Min_UQ	_Q15(0.1)	//最小运行占空比,电压环时配置
3	14 #define Motor_Max_UQ	QOUTMAX	//最大运行占空比,电压环时配置

3. 通过调整电压环 PI(SKP 和 SKI)和电压环爬坡增量保证环路稳定,启动响应快且不过冲;

Customer.h Protect.h AddFunction.c		
263 #define SKP	_Q12(0.4)	// 外环KP
264 #define SKI	Q12(0.01)	// 外环KI
Customer.h Protect.h AddFunction.c		
269 #define SpeedRampStart	(50.0)	// 档位切换时加速增量
270 #define SpeedRampEnd	(2.0)	// 稳定运行时加速增量

说明:

- 1) SpeedRampStart: 加减速过程中环路未稳定时的爬坡增减量
- 2) SpeedRampEnd: 环路稳定时的爬坡增减量

4.9 增加调速等功能

- 1. 一般工业风机为 PWM 或 VSP 调速,以 PWM 调速为例:
 - 1) 将调速模式修改为 PWM 调速;

	I	Fort	t ior Tech 肇昭科技				Α	pplicati	on Note			
		<u> </u>	stomer.h Protect.h	AddFunction.c								
		322 323 324 325 326 327	SPEED_MODE NONEMODE PWMMODE SREFMODE UARTMODE	:调速模式选择 :直接给定转速 :Duty调速,需 :模拟调速,需 :UART调速	,不调速 初始化对应题 使能对应ADI	定时器 □						
		328	<pre>#define SPEED_M</pre>	ODE	(PW	MMODE)				^/		
	2)	根据	客户给的 PW	M曲线,调	整开关机、	、最大最小	、占空比;					
	·	327 328 329 330 331 332	/*PWM调速模式下电材 /* motor ON/OFF va. #define OFFPWMDuty #define ONFWMDuty #define MINPWMDuty #define MAXPWMDuty	l开关机的设置 lue */	_Q15(0.08) _Q15(0.1) _Q15(0.1) _Q15(0.98)			// 关机PWM占 // 开机PWM占 // 调速曲线」 // 调速曲线」	/ 空比,小于该占空 空比,大于该占空 二最小PWM占空比 二最大PWM占空比	比关机 比时开机		
	3)	根据 309 310	客户给的曲线 ^{#define Motor_Min #define Motor_Man}	,调整最大	最小运行 	占空比; ,		//最小i //最大i	回行占空比,电压现 回行占空比,电压现	不时配置 不时配置		
		得到	的曲线最低点	为(MINPWMI	Duty,Mo	tor_Min_U	Q),最高	点为(MAX	PWMDuty,	Motor_	_Max_U0	(ג
4)	确认	(客户)	是正 PWM 调词	速还是负 PWI	Ⅰ 调速:〕	正 PWM 调	速: 转速	随着占空日	2.增大而增大	、; 负 P	WM 调速	: 转
	速随	PWN	N 增大而减小;									
	334 335 336	白/* -	PWMDUTY_Choose :	PWM正负反馈选执	 ¥							

注意事项:

337

338 339 NegaPWMDUTY

#define PWMDUTY_Choose

1. 根据 PWM 频率,在 Timer3 初始化的时候,选择合理的 Timer 分频;

:负PWMduty调速

 开关机占空比,要留有一定的滞回区间,如 10%开机,8%关机。留 2%的滞回区间。开机跟关机占 空比如果一样的话,会导致时开时关;

(PosiPWMDUTY)

- 当 PWM 占空比获取不对时,看进入芯片引脚的 PWM 信号是否已经失真,如果滤波电容太大的话, 会导致 PWM 信号失真;
- PWM 信号有干扰的,尝试打开捕获 TIM 口的滤波功能,或者调整 PWM 硬件滤波电容,尽量靠近芯片引脚。
- 2. FG 输出方式配置;

<u> </u>	Istomer.h Protect.h Add	Function.c	
127			
120	FG MODE :FG-HI II /J JCH	山島	
129	DISABLE FG OUTPUT	(不仅现16) 通过手站在空台的脸上。这里,这些月期在这时的白时的	2
130	SOFT_TIMFG_OUTPUT	: 通过于初配直定可薪制出FG信亏,制出引脚带按对应定可都	F
131	HARD_TIMFG_OUTPUT	: 通过 TIMER4 输出FG信号,输出引脚需接对应定时器	
132	THETA FG OUTPUT	: 通过角度输出FG信号, 输出引脚接GPIO即可	
133			*/
134	#define FG MODE	(SOFT_TIMFG_OUTPUT)	
135	#define FPin	(GP11)	//FG输出引脚
136	#define FG_K	(1.0)	//一个电周期输出脉冲数

注意事项:

对于 FG 反馈稳定性要求较高时,需配合硬件用定时器方式输出,可选 SOFT_TIMFG_OUTPUT 或 HARD_TIMFG_OUTPUT 两种方式;否则可选普通的 GPIO 输出方式 THETA_FG_OUTPUT

添加保护功能,根据客户需求使能启动保护、堵转保护、缺相保护、过欠压保护等。所有其他程序中还没添加的保护,则要额外再添加。具体保护介绍参考<u>章节 5.2。</u>

4.10 可靠性测试

4.10.1 功能可靠性

全部功能添加完成后,要再按照客户需求表重新测试确保没异常状态发生。

4.10.2 保护可靠性

保护添加之后,要验证保护都可以正常触发,且在电机运行时不会误触发。例如:如果堵转保护的参数设置 不合理,可能会导致电机在正常运行时也会误报堵转保护;或者是电机发生堵转后,不会触发堵转保护。

4.10.3 启动稳定性

在功能都基本调试完成之后,要做启动的可靠性测试,可先手动测试,手动测试没问题后,再进行老化测试。 老化测试步骤:

1. 调速模式选择为 ONOFFTEST;

<u> </u>	istomer.h	
322 -	∃/*	
323	SPEED MODE	:调速模式选择
324	NONEMODE	:直接给定转速,不调速
325	PWMMODE	:Duty调速,需初始化对应定时器
326	SREFMODE	:模拟调速,需使能对应AD口
327	UARTMODE	:UART调速
328	ONOFFTEST	:启停测试工具
329	OTHERS	:其他调速方式
330		*/
331	#define SPEED M	ODE (ONOFFIEST)

 根据实际情况配置运行时间 StartON_Time 和停止时间 StartOFF_Time; 调整 ONOFFTEST_SPEED 的 值可以修改启停的转速大小;

	stomer.h		
235	/*****启停测试参数*****/		
236	<pre>#define StartON Time</pre>	(6500)	// (ms) 启动运行时间
237	<pre>#define StartOFF_Time</pre>	(1000)	// (ms) 停止时间
238	<pre>#define ONOFFTEST_SPEED</pre>	(300)	//启停测试设置目标转速

- 先用工具堵住电机上电,看是否能正常触发堵转保护,且保护后电机不会重启,即验证了启停时如果触 发保护电机不会二次重启;
- 再次上电进行老化测试即可。最后根据电机是否处于停止状态判断启动是否有异常,启动失败后,电机 会一直停机不再重启。一般测试 3000 次以上没问题则认为启动可靠(时间允许的情况下越多越好)。

5 功能介绍

目前拿到初始版本程序,配置好电机参数,硬件参数后,给开机信号时,电机基本都能正常启动。若不能正 常启动,则在排除是硬件问题的前提下,再调整启动参数。

5.1 启动调试

5.1.1 Omega 启动

工业风机选择 Omega 启动,程序对应默认即是该启动方式。

	Customer.h				
227 -]/*				
228	Open_Start_Mode	:开环启动模式选择,默认用Omega_Start即可			
229	Open_Start	:开环强拖启动			
230	Omega Start	:Omega启动			
231	Open Omega Start	:先开环启,后Omega启动			
232		*/			
233	#define Open_Start_Mod	e (Omega_Start)			
004		-			

当估算器的估算速度 OMEGA 小于用户设定的最小值 FOC_EFREQMIN(对应 MOTOR_OMEGA_ACC_MIN 参数),强制速度从 0 开始,每个运算周期与速度增量 FOC_EFREQACC (Motor_Omega_Ramp_ACC)参数相加,同时根据 FOC_EFREQHOLD (MOTOR_OMEGA_ACC_END 参数)进行最大值限幅,输出强制速度作为最终速度 EOME 供角度计算模块算出估算器角度 ETHETA;当估算器的估算速度 OMEGA 大于等于 EFREQMIN 时,输出估算速度 OMEGA 作为最终速度 EOME。

5.1.2 启动常见问题&解决方式

常见问题	解决方法
电机动一下后静止,且一直有电流输出	1. 启动电流太小电机输出无法切换到下一拍 换相,增大 IQ_Start_CURRENT; 2. 估算器输出速度太小无法换相到下一拍, 若排除 A 后此时依次加大 ATO_BW、 ATO_BW_RUN、ATO_BW_RUN1、ATO_BW_RUN2; 3. 排除 A、B 后,检查硬件电路运放 AMPO 部 分是否有问题导致电流采样不准,估算器估 算不正常。 4. 也有可能是 omega 加速度的频率太高导 致,可以减小 Motor_Omega_Ramp_ACC
电机转一下后停下且一直抖动	 1.此种情况一般为 ATO_BW 值太大,导致估算 器输出转速较高,启动时失步,此时依次减 小 ATO_BW、ATO_BW_RUN、ATO_BW_RUN1、 ATO_BW_RUN2。 2. Omega 启动参数也会有影响。
启动正序旋转一定角度后卡顿一下再正常旋 转	1. 此时可估计从启动到出现卡顿的时间,再 设置对应时间的 ATO_BW 值,例如: 启动 1s 后电机卡顿一下然后继续正常运行,1s 时间 对应的值为 ATO_BW_RUN1、ATO_BW_RUN2,此 时该 ATO_BW 值较小限制了电机加速,相应加 大该值即可。 2. omega 加速度太小时也会造成卡顿的情 况,可以加大 Motor_Omega_Ramp_ACC
电机启动反转后正转时持续抖动	1. 电机启动反转一下后正转所需要的时间较 长,此时 ATO_BW 己加到比较大的值,因此减 小相应时间的 ATO_BW 值即可。 2. 也有可能是 omega 加速度的频率太高导 致,可以修改 Motor_Omega_Ramp_ACC

5.2 保护介绍

每个项目,不同电机,不同板子的保护值都会有所不同,各种保护的保护值都要根据实际项目去匹配。当发 现保护,特别是堵转保护或缺相保护触发不了,或者正常运行时,误触发保护时,说明是保护设定值不合理导致 的,此时要调整保护的设定值。

5.2.1 过流保护

1. 硬件过流保护

芯片通过比较器 3 做硬件过流保护,检测方法: 母线电流流经采样电阻,在采样电阻上形成一个电压,这 个电压经过运算放大器放大送入比较器的正向输入端。比较器的负向输入端会被设置一个参考电压,这个参考 电压可选择 DAC 产生或者由外部分压得到(目前都是用的 DAC 产生)。当母线电流增大到一定数值之后,就 会导致比较器的正向输入端的电压高于负向输入端电压,这个时候就会触发 MCU 的比较器中断,MCU 发生 中断并自动关闭 MOE(可选择自动或者不自动关闭 MOE,目前默认都是自动关闭 MOE),从而完成过流保 护。硬件过流保护只需要修改保护值 OverHardcurrentValue 的大小即可。

1	nterrupt.c	Customer.h* AddFunction.	Parameter.h Protect.h	
18 19 20	<pre>#define #define</pre>	HardwareCurrent_Protect OverHardcurrentValue	(Hardware_CMP_Protect) (4.5)	// 硬件过流保护方式选择 // (A) DAC模式下的硬件过流值,不能>最大采样电流!!!

2. 软件过流保护

程序通过获取三相电流值,当相电流值超过设定的软件过流保护值 OverSoftCurrentValue 时,则计一次; 计数3次后触发保护。

	Interrupt.c	Customer.h*	AddFunction.c	Parameter.h	Protect.h	MotorProtect.c] FU68x	x_2_MCU.h		
21										
22	/*软件	∹过流保护*/								
23	#defir	ne OverSoftCur	rentValue	I_Value(4.0)		/ /	(A) 软作	牛过流值,	不能>最大采样电流!!!

5.2.2 电压保护

程序通过AD2口检测电压,当检测到的电压超过设定值时,则报过压保护;此时当电压重新低于过压恢复值时,清除过压保护故障。当电压低于设定的欠压值时,则报欠压保护。此时当电压重新高于欠压恢复值时,清除 欠压保护故障。

<u> </u>	ustomer.h Protect.h		
36	/*过欠压保护*/		
37	<pre>#define VoltageProtectEnable</pre>	(1)	// 电压保护,0 , 不使能; 1,使能
38	<pre>#define Over_Protect_Voltage</pre>	(46)	// (Ⅴ) 直流电压过压保护值
39	<pre>#define Over Recover Vlotage</pre>	(44)	// (V) 直流电压过压保护恢复值
40	<pre>#define Under_Protect_Voltage</pre>	(28)	// (V) 直流电压欠压保护值
41	<pre>#define Under_Recover_Vlotage</pre>	(30)	// (♡) 直流电压欠压保护恢复值

5.2.3 缺相保护

电机发生缺相时,三相电流是不对称的。因此可以通过在程序中检测一定时间内的三相电流的最大值,判断 三相电流的最大值是否有不对称的情况来实现缺相保护。

具体程序实现方法:若检测到其中一相的最大电流大于另一相最大电流的3倍,且该相最大电流大于设定的 PhaseLossCurrentValue值,则判定为缺相。

Cu	Customer.h Protect.h						
57	/*缺相保护*/						
58	<pre>#define PhaseLossProtectEnable</pre>	(1)	// 缺相保护,0,不使能; 1, 使能				
59	<pre>#define PhaseLossCurrentValue</pre>	I_Value(0.05)	// (A) 缺相判断电流阈值,注意在最低运行电流下是否会误触发!!!				
60	<pre>#define PhaseLossRecoverTime</pre>	(3000)	// (ms) 缺相保护延时重启时间				
61	<pre>#define PhaseLossRestartTimes</pre>	(5)	// 缺相保护重启次数,最大255,单位: 次				

注意事项:

有些方案在缺相时,由于缺的那一相会有毛刺的存在,可能会导致采集的最大电流值跟另外两相差不 多,这时候通过上述方法可能检测不出来。解决方法:可以通过积分的方式,在一定时间内通过去比较电流 累计值的大小去判断缺相。

5.2.4 堵转保护

堵转保护有4种方法检测:

通过检测估算器计算出来的FOC_ESQU(估算器计算的反电动势的平方)判断,正常情况下,电机转速越高,FOC_ESQU会越大。在电机发生堵转时,电机失步的情况下,估算转速会很高,但是FOC_ESQU会很小,因此可以通过该方式判断。

具体程序实现方法:

 方法一,运行1s内,当估算转速>设定值STALL_MAX_SPEED或估算转速>设定值 EsThresholdSpeed1且FOC_ESQU的值<设定值EsThresholdValue1时,触发堵转保护,延时 StartRecoverTime时间重启;

🛄 Cu	sto	omer.h Protect.h MotorProtect.c
182	-]	
183		//方法一,判断转速太大或当转速太大反电动势太小,超过一定次数后则认为堵转
184		if ((mcFocCtrl.SpeedFlt > STALL_MAX_SPEED)
185		((mcFocCtrl.SpeedFlt > EsThresholdSpeedl) && (mcFocCtrl.EsValue < EsThresholdValuel)))
186 🗄	-	{
187		mcFaultDect.StallDectESSpeed++;
188		if (mcFaultDect.StallDectESSpeed > 50)
189 🗄	-	(
190		mcFaultDect.StallDectESSpeed = 0;
191		<pre>mcProtectTime.StallFlag = 1;</pre>
192		mcFaultSource = FaultStall;
193	-	}
194	-	}
195		else
196 🗄	-	{
197		if (mcFaultDect.StallDectESSpeed)
198 🗄	-	{
199		mcFaultDect.StallDectESSpeed;
200	-	}
201		}
202	-	
203		mcFaultDect.StallReTime = StartRecoverTime;

 方法二,运行1s后,当FOC_ESQU的值 < 设定值EsThresholdValue0或估算转速 > 设定值 EsThresholdSpeed1且FOC_ESQU的值 < 设定值EsThresholdValue1时,触发堵转保护,延时 StallRecoverTime时间重启

Customer.h Drotect.h MotorProtect.c
131 if (Time.RunStateCnt > 1000)
132 白(
133 / //方法二,判断反电动势ES太小或当转速太大反电动势太小,超过一定次数后则认为堵转
134 if ((mcFocCtrl.EsValue < EsThresholdValue0)
135 ((FOC_EOME > EsThresholdSpeed)) && (mcFocCtrl.EsValue < EsThresholdValuel))
136 🖨 🤞
137 mcFaultDect.StallDectEs++;
<pre>138 if (mcFaultDect.StallDectEs >= 50)</pre>
139 🖨 🤞
140 mcFaultDect.StallDectEs = 0;
141 mcProtectTime.StallFlag = 2;
142 mcFaultSource = FaultStall;
143 - }
144 - }
145 else
146 🖨 🤞
147 if (mcFaultDect.StallDectEs)
148 🖨 🦷 🕻
149 mcFaultDect.StallDectEs;
150 - }
151 }

- 方法三,运行1s后,当估算转速 < 设定值STALL_MIN_SPEED或估算转速 > 设定值 STALL_MAX_SPEED时,触发堵转保护,延时StallRecoverTime时间重启
- 4. 方法四,运行1s后,仍然未切闭环,触发堵转保护,延时StallRecoverTime时间重启

🔜 Custome	r.h Protect.h 🔠 MotorProtect.c
172	//方法四,长时间没闭环,则认为启动失败
173	<pre>if(mcFocCtrl.CtrlMode < 1)</pre>
174 📥	{
175	<pre>mcProtectTime.StallFlag = 4;</pre>
176	mcFaultSource = FaultStall;
177	}
178 -	
179	<pre>mcFaultDect.StallReTime = StallRecoverTime;</pre>

//堵转恢复时间

5.2.5 偏置电压保护

电机开始之前,会先采集偏置电压,有接 VHALF 时,偏置电压采集值理论上为 2048,左移 3 位后为 16383 左右;没接 VHALF 时,理论值为 0;当采集的值 ± 超过理论值的百分比 GetCurrentOffsetValue 时,则认为偏置电压异常。其中,0.20 代表 20%。

5.2.6 其他保护

根据客户需求自行添加其他保护。

6 其他常见功能调试

6.1 限功率功能

使用电压环控制时,当工业风机全速运行且负载较重时,母线电流可能较大而容易把电源拉复位,故需要使 用限功率功能对功率进行限定,

限功率功能目前有3种方式:

- 通过对目标值限制实现,当检测功率超过保护阈值之后,在爬坡函数中对目标值限制从而达到限功率, 此方法容易发生震荡故不做详细说明
- 2. 通过切换不同闭环实现,当全速运行且负载较重的时候,检测到功率超过限制值,那么程序会切入功率 闭环从而达到限功率功能,当负载较轻时转速会超过目标值,此时切回电压闭环,从而实现了负载变化 时限功率的功能。此方法需要调节电压环 PI 和功率环 PI 以及 PI 响应周期,而且切环过程容易出现震 荡,故不做详细说明
- 3. 双 PI 的方式限制转速,硬件 PI 实现电压闭环,软件 PI 实现功率限制,软件 PI 输出限制 FOC_QMAX, 代码如下:

```
Customer.h
            Protect.h
                       MotorProtect.c
                                       AddFunction.c
 522 白#if (SPEED LIMIT ENABLE)//限速
 523 🗎 {
 524
          FOC_QMAX = PIDControl(&SpeedPID, Motor_Limit_Speed, mcFocCtrl.SpeedFlt);
 525
     - }
      #elif (POWER LIMIT ENABLE)//限功率
 526
 527 🗄 {
 528
          FOC QMAX = PIDControl(&SpeedPID, MOTOR LIMIT POWER, mcFocCtrl.Powerlpf);
 529
      - 1
      #endif
 530
```

目前程序已经添加了限速限功率功能,可直接使用。

	Stometar Protectar MotorProtectac		
272	//限制环路相关参数		
273	<pre>#define LimitLoopKp</pre>	_Q12(0.7)	
274	<pre>#define LimitLoopKi</pre>	Q12(0.01)	
275			
276	/*****限速限功率调节参数*****/		
277	#define SPEED_LIMIT_ENABLE	(Disable)	//限速使能,SPEED_LIMIT_ENABLE/POWER_LIMIT_ENABLE只能二选一!
278	#define MOTOR_SPEED_LIMIT_RPM	(6800.0)	//(RPM) 限制转速
279			
280	#define POWER_LIMIT_ENABLE	(Enable)	//限功率使能,SPEED_LIMIT_ENABLE/POWER_LIMIT_ENABLE只能二选一!
281	#define MOTOR_LIMIT_POWER	(15000)	//功率上限

6.2 限流功能

母线限流使能时,需要打开对应的 AD,如下

Customer.h	Protect.h MotorProtect.c AddFunction.c
1309 🖨	<pre>#if ((Current_LIMIT_ENABLE) (Motor_Speed_Control_Mode == CURRENT_LOOP_CONTROL))</pre>
1310 🖨	(
1311	/*****RC母线电流采样,限流或恒母线电流用*****/
1312	AdcSampleValue.ADCIbus = ADC5_DR << 3;
1313	<pre>if(AdcSampleValue.ADCIbus > mcCurOffset.Iw_busOffset)</pre>
1314 📥	{
1315	AdcSampleValue.ADCIbus = AdcSampleValue.ADCIbus - mcCurOffset.Iw_busOffset;
1316 -	}
1317	else
1318 🖨	(
1319	AdcSampleValue.ADCIbus = 0;
1320 -	}
1321	<pre>mcFocCtrl.mcIbusFlt = LPFFunction(AdcSampleValue.ADCIbus,mcFocCtrl.mcIbusFlt,50);</pre>
1322 -	}
1323	#endif

Cu:	stomer.h Protect.h MotorProtect.c	AddFunction.c	
283	//母线限流使能		
284	<pre>#define Current_LIMIT_ENABLE</pre>	(Disable)	//母线限流使能
285	<pre>#define LIMITCurrent</pre>	I_Value(2.5)	//限流值
286	<pre>#define LIMIT_CURRENTRecover</pre>	(LIMITCurrent- I_Value(0.02))	//最大恢复值
287	<pre>#define LimitCurrentDec</pre>	(30)	//限流时PI调节量

7 方案调试难点&解决方法

电压环调试			
常见问题	解决方法		
启动一直有异常	启动一直调试不好,软件问题排除后,可以查看硬件采 样布线等是否有问题。		
顺风启动有异常,一直检测不准	查看硬件反电动势检测电路部分的地线是否布置合理, 一般检测不准大都是地线等不合理有干扰导致。		
电机速度响应较慢	1. 调试外环的 SKP, SKP; 2. 调节时间 LOOP_TIME; 3. 如果只是加减速比较慢,就调节加减速的增减量		
在堵住吸风口后,快速放开,这时 候电流会突然变很大导致硬件过流	一般是由于内环电流环没响应过来导致,可以加大电流 环的 PI,即 DQKP,跟 DQKI		
转速或者功率达不到客户要求	1. 电流波形正弦的情况下,通过观测 FOC_UQ 是否饱和; 2. FOC_UQ 饱和,且 FOC_UD 值比较大的话,通过调整补偿角 FOC_THECOMP(正负都调整看看)确认是否能达到客户需求; 3. 以上还是达不到要求时,确认是电机问题时,可让客户直接修改电机。		
电机运行到高转速后容易出现大电 流的情况	 		
电流波形存在正弦度失真	 1. 看采样偏置基准是否正常; 2. 修改电流环的 PI,即 DQKP, DQKI; 3. 修改采样点延时时间 FOC_TRGDLY; 4. 修改载波频率(注意修改后会影响启动跟运行)。 		
注意事项: 修改参数后, 基本都会影响启动和运行性能, 解决好问题后要重新测试确认。			

8 修改记录

版本号	修改详细内容说明	生效日期	修订者
V1.0	初稿	2022/09/27	汤伟
V1.1	修订格式	2024/01/26	付倩雯

版权说明

版权所有©峰岹科技(深圳)股份有限公司(以下简称:峰岹科技)。

为改进设计和/或性能,峰岹科技保留对本文档所描述或包含的产品(包括电路、标准元件和/或软件)进行更改的 权利。本文档中包含的信息供峰岹科技的客户进行一般性使用。峰岹科技的客户应确保采取适当行动,以使其对 峰岹科技产品的使用不侵犯任何专利。峰岹科技尊重第三方的有效专利权,不侵犯或协助他人侵犯该等权利。 本文档版权归峰岹科技所有,未经峰岹科技明确书面许可,任何单位及个人不得以任何形式或方式(如电子、机 械、磁性、光学、化学、手工操作或其他任何方式),对本文档任何内容进行复制、传播、抄录、存储于检索系 统或翻译为任何语种,亦不得更改或删除本内容副本中的任何版权或其他声明信息。

峰岹科技(深圳)股份有限公司 深圳市南山区科技中二路深圳软件园二期 11 栋 2 楼 203 邮编: 518057 电话: 0755-26867710 传真: 0755-26867715 网址: www.fortiortech.com

本文件所载内容 峰岹科技(深圳)股份有限公司版权所有,保留一切权力。