

20W High-Integration, High-Efficiency Power Solution for Wireless Power Transmitter

Description

The FS4030Q is a high efficient synchronous buck power stage module consisting of H-bridge MOSFETs and an integrated driver. The MOSFETs are individually optimized for the operation in the synchronous buck configuration. The high side and low side MOSFETs have ultralow $R_{DS(ON)}$ to minimize conduction losses. The bootstrap diode is integrated in the driver.

Features

- 4V to 16V supply voltage
- Up to 20W Power Transfer
- Integrated high efficiency H-Bridge power stage
- Integrated four low R_{DS(ON)} power FETs
- Build in 5V-100mA LDO

- 3.3V/5V logic input compatible
- Under-voltage lockout for all channels
- Disable function
- Thermal shutdown
- QFN24-4mm×4mmpackage
- ROHS compliant and halogen free

Applications

- WPC Compliant Wireless Chargers of 5W to 15W Systems for mobiles, Tablets and Wearable devices
- General Wireless Power Transmitters for Consumer, Industrial and Medical Equipment
- Proprietary Wireless Chargers and Transmitters
- H-Bridge DC-DC Switching Regulator

Typical Application Circuit

Pin Configuration

Pin Description

Pin	Name	Description				
1	VCC	Low side and logic fixed supply				
2	VDD5	5V LDO output. Connect a 0.1uF or greater capacitor to COM.				
3 EN Logic input for driver enable/disable. Drive EN high to turn on t						
4	IN1	 FS4030Q, drive EN low to turn off the FS4030Q. Logic input to the FET Q1 and Q2 as shown in the block diagram. Drive IN1 high to turn on the high-side FET Q1, and turns off the low-side FET Q2. Drive IN1 low to turn on the low-side FET Q2, and turns off the 				
		high-side FET Q1.				
5	IN2	Logic input to the FET Q3 and Q4 as shown in the block diagram. Drive IN2 high to turn on the high-side FET Q3, and turns off the low-side FET Q4. Drive IN2 low to turn on the low-side FET Q4, and turns off the high-side FET Q3.				
6	COM	Low side gate drive return				
7	VB2	High side floating supply. Connect a 0.1uF or greater capacitor between VB2 and VS2.				
8,9	VBUS2	DC bus				
10,11	VS2	Phase output				
13,14	PGND2	Low side source connection				
15,16	PGND1	Low side source connection				
17,18	VS1	Phase output				
20,21	VBUS1	DC Bus				
24	VB1	High side floating supply. Connect a 0.1uF or greater capacitor between VB1 and VS1.				
12,19,22,23	NC	Not connected				

Functional Block Diagram

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage to the device.

Symbol	Description	Min	Max	Unit
V _{BUS1,2}	DC bus voltage	-0.3	20	V
V _{S1,2}	High side floating supply offset voltage		V _{BUS1,2}	V
V _{BS1,2}	$V_{B1,2}$ to $V_{S1,2}$ voltage	-0.3	6.5	V
VCC	Low side fixed supply voltage	-0.3	24	V
V _{IN}	Logic input voltage	-0.3	6.5	V
TJ	Maximum operating junction temperature		150	°C
T_L	Lead temperature (soldering 30 seconds)		260	°C
Ts	Storage temperature range	-55	150	°C
PD	Power dissipation $@T_A \leq 25^{\circ}C$		3.0	W
R _{th} (J-A)	Thermal resistance, junction to ambient		42	°C/W

Note1: In any case, power dissipation should not exceed P_D.

Note2: Voltages above the absolute maximum ratings may damage the chip.

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Maximum Recommended Operating Conditions.

Symbol	Description	Min	Тур	Max	Units
V _{BUS1,2}	DC bus voltage		12	16	V
V _{S1,2}	High side floating supply offset voltage			16	V
V _{CC}	Low side and logic supply voltage	4		16	V
V _{IN}	Logic input voltage	0		5.5	V
f_{SW}	Switching frequency			500	kHz
T _A	Operating temperature	-40		85	°C

Static Electrical Characteristics

 V_{CC} =12V, T_A =25°C, unless otherwise specified.

Symbol	Description	Min	Тур	Max	Units	Conditions
V _{IH}	Logic "1" input voltage for IN/EN	2.7			V	
V _{IL}	Logic "0" input voltage for IN/EN			0.8	V	
V _{CCUV+}	V _{CC} undervoltage protection trip voltage	3.2	3.6	4.0	v	
V _{CCUV-}	V _{CC} undervoltage protection reset voltage		3.4	3.8	V	
V _{CCUVH}	V _{CC} undervoltage protection hysteresis voltage		0.2		V	
$V_{\rm F}$	Bootstrap diode		0.8		V	I _F =10mA
т	VCC quiescent current		500	900	uA	$V_{EN} = 5V, V_{IN} = 0/5V$
IQCC	VCC standby current		50	90	uA	V _{EN} =0V
I _{LK_VBUS}	Leakage current for VBUS1/VBUS2		1	5	uA	V _{EN} =0V, V _{VBUS} =20V
I_{IN^+}	Input bias current for IN/EN		120	210	uA	V _{IN} =5V
I _{IN-}	Input bias current for IN/EN			2	uA	V _{IN} =0V
V _{5P0}	Output voltage	4.8	5	5.2	V	
I _{5P0}	Output current capability	100			mA	
T _{SD}	Thermal shutdown		165		°C	
T _{SDH}	Thermal shutdown hysteresis		30		°C	

Note: All voltages are specified with respect to the corresponding COM/PGND pin.

Package size (QFN24-4*4)

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		A	0.7	0.75	0.8	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		A2		0.55		
L/F THICKNESS		A3	0.203 REF			
LEAD WIDTH		b	0.2	0.25	0.3	
BODY SIZE	X	D	4 BSC			
DOD'T SIZE	Y	E	4 BSC			
LEAD PITCH		е	0.5 BSC			
EP SIZE	Х	D2	2.6	2.7	2.8	
	Y	E2	2.6	2.7	2.8	
LEAD LENGTH	L	0.3	0.4	0.5		
LEAD TIP TO EXPOSED	к	0.2 min				
PACKAGE EDGE TOLERA	aaa	0.1				
MOLD FLATNESS	ccc	0.1				
COPLANARITY	eee	0.08				
LEAD OFFSET	bbb	0.1				
EXPOSED PAD OFFSET	fff	0.1				
		1				

Part Number	Package Type	Marking ID	Package Method	Quantity
FS4030Q	QFN24-4*4	FS4030Q	Tape & Reel	3000

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology (Shenzhen) Co., Ltd.

Room203, 2/F, Building No.11, Keji Central Road2, Software Park, High-Tech Industrial Park, Shenzhen, P.R. China 518057 Tel: 0755-26867710 Fax: 0755-26867715 URL: <u>http://www.fortiortech.com</u>

Contained herein Copyright by Fortior Technology (Shenzhen) Co., Ltd all rights reserved.