

N-CHANNEL POWER MOSFET

Features :

- Fast body diode eliminates the need for external diode in ZVS applications.
- Lower gate charge results in simpler drive requirements
- Higher gate voltage threshold offers improved noise immunity
- Low on-resistance
- RoHS compliant

Applications:

- Motor control
- Uninterruptible power supplies
- Zero voltage switching SMPS

V _{DSS}	600	V
ID	7	А
Trr	198	ns
R _{DS(ON)} Typ	1.1	Ω

Symbol	Parameter	Rating	Units	
V _{DSS}	Drain-to-Source Voltage	600	V	
т	Continuous Drain Current	7*	А	
I _D	Continuous Drain Current TC = 100 °C	4.8*	А	
I _{DM}	Pulsed Drain Current	28*	А	
V _{GS}	Gate-to-Source Voltage	±30	V	
E _{AS} 2	Single Pulse Avalanche Energy	440	mJ	
E _{AR} ①	Avalanche Energy, Repetitive	50	mJ	
I _{AR}	Avalanche Current	3.3	А	
P _D	Power Dissipation	40	W	
dv/dt	Peak Diode Recovery dv/dt	5	V/nS	
TJ	Junction Temperature	150	°C	
T _{stg}	Storage Temperature Range	-55 to 150	°C	

Absolute $(T_c = 25^{\circ}C)$:

*: Drain current limited by maximum junction temperature

Ordering Information

Product number	ber Package Marking		Packing	Quantity	
FMD7N60P5	TO220FP	FMD7N60P5	Tape & Reel	50	

Electronic Characteristics (Tc=25°C)

PARAMETER	SYMBOL	YMBOL TEST CONDITION			MA X	UNI T	
Drain-source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	600			V	
Breakdown Voltage Temperature Coefficient	$\begin{array}{c} \Delta BV_{DSS/}\Delta \\ Tj \end{array}$	I _D =250uA, Referenced to 25°C		0.6		V/°C	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS}=V_{DS}$, $I_D=250\mu A$	2.0		4.0	V	
	T	V _{DS} =600V,V _{GS} =0V, Tj=25°C			1	μΑ	
Drain-source Leakage Current	I _{DSS}	$V_{DS} = 480V, V_{GS} = 0V, T_j = 125^{\circ}C$			100	μΑ	
Forward Transconductance	gfs	V _{DS} =15V, I _D =3.5A ③		7		S	
Gate-body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 30V$			±10 0	nA	
Drain-source On Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.5A ③		1.1	1.5	Ω	
Input Capacitance	Ciss			1050			
Output Capacitance	Coss	$\begin{array}{l} V_{GS}=0V,V_{DS}=25V\\ F=1.0MHZ \end{array}$		84		pF	
Reverse transfer Capacitance	Crss			12			
Turn-on Delay Time	Td(on)			17			
Rise Time	Tr	V _{DD} =300V, I _D =7.0A		20		ns	
Turn -Off Delay Time	Td(off)	$R_G=25\Omega$ (3)		39			
Fall Time	Tf			18			
Total Gate Charge	Qg			21		nC	
Gate-to-Source Charge	Qgs	$I_{\rm D}$ =7.0A, $V_{\rm DS}$ = 480V $V_{\rm GS}$ = 10V		4.8		nC	
Gate-to-Drain Charge	Qgd			6.5		nC	
Continuous Diode Forward Current	Is				7.0	А	
Max Pulsed Diode Forward Current	I _{SM}				28	А	
Diode Forward Voltage	V _{SD}	Tj=25°C, Is=7.0A, V_{GS} =0V			1.4	V	
Reverse Recovery Time	trr	Tj=25°C, If=7.0A		198		ns	
Reverse Recovery Charge	Qrr	di/dt=100A/µs ③		0.5		uC	
Thermal Resistance Junction-case	Rth _{JC}			3.13		°C/W	
Thermal Resistance Junction-ambient	Rth _{JA}			62.5		°C/W	

Notes:

1 Repetitive rating: Pulse width limited by maximum junction temperature

② Starting Tj=25°C, V_{DD} =50V, L=18mH, R_G =25 Ω , I_{AS}=7.0A

(3) Pulse Test : Pulse width $\leq 300\mu$ s, Duty cycle $\leq 2\%$

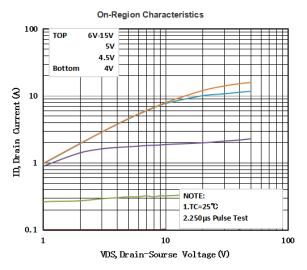


Fig1 Typical Output Characteristics, Tc=25 $^\circ\!\mathrm{C}$

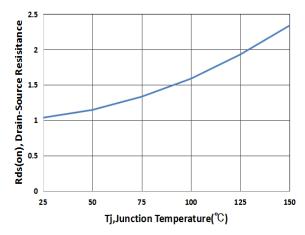


Fig3 On-Resistance Vs.Temperature

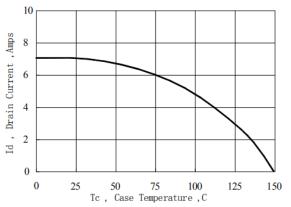


Fig5 Maximum Drain Current Vs.Case Temperature

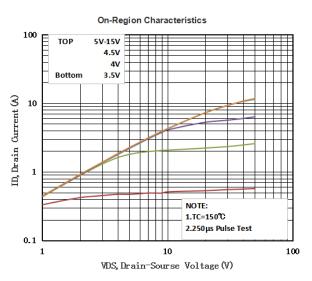


Fig2 Typical Output Characteristics, Tc=150°C

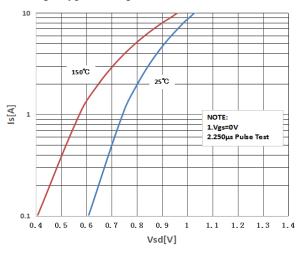


Fig4 Typical Source-Drain Diode Forward Voltage

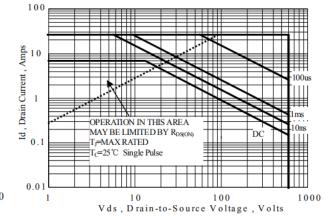


Fig6 Maximum Safe Operating Area

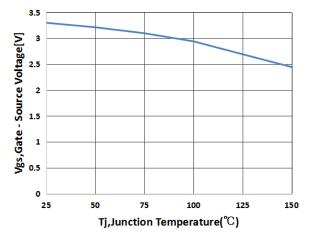


Fig7 Gate Threshold Voltage Variation vs. Temperature

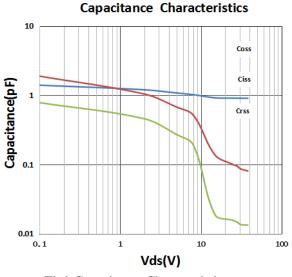


Fig9 Capacitance Characteristics

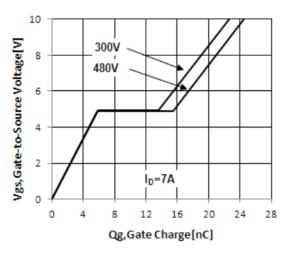


Fig11 Gate Charge VS Gate to Source Voltage

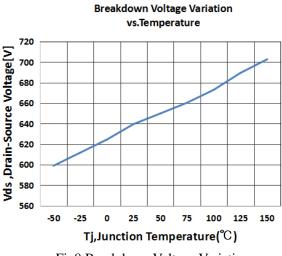
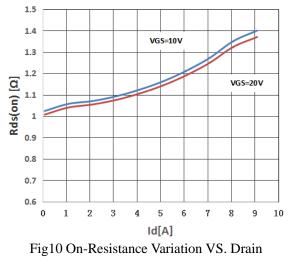



Fig8 Breakdown Voltage Variation

vs. Temperature

On-Resistance Variation VS. Drain Current and Gate Voltage

Current and Gate Voltage

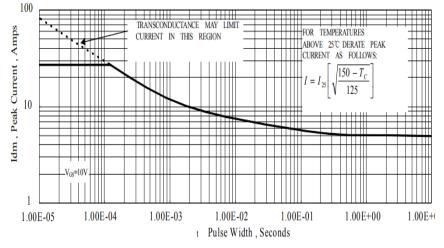
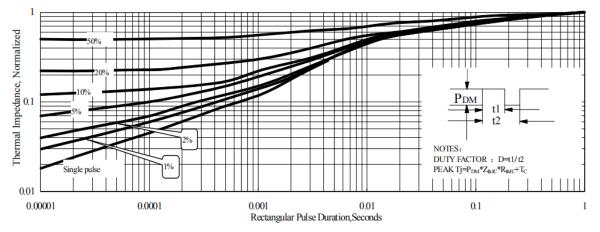
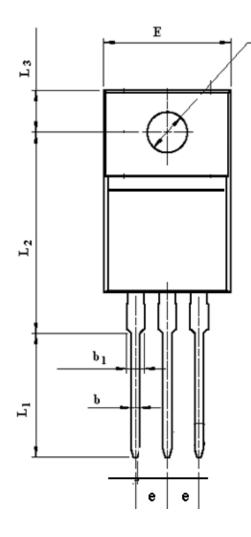
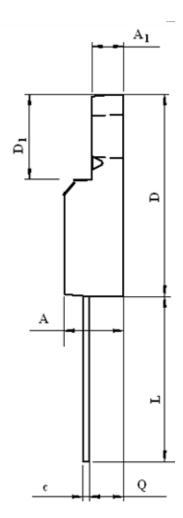


Fig12 I_{DM} VS Pulse Width




Fig13 Normalized Thermal Impendence VS Rectangular Pulse Duration



TO-220FP MECHANICAL DATA

							UNIT: mm
SYMBOL	min	nom	max	SYMBOL	min	nom	max
А	4.40		4.95	е		2.54	
A ₁	2.30		2.90	L	12.50		14.30
b	0.45		0.90	L ₁	9.10		10.05
b 1	1.10		1.70	L_2	15.00		16.00
с	0.35		0.90	L ₃	3.00		4.00
D	14.50		17.00	øp	3.00		3.50
D1	6.10		9.00	Q	2.30		2.80
Е	9.60		10.30				

øP

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology (Shenzhen) Co., Ltd.

Room203,2/F, Building No.11,Keji Central Road2, SoftwarePark, High-Tech Industrial Park, Shenzhen, P.R. China 518057 Tel: 0755-26867710 Fax: 0755-26867715 URL: <u>http://www.fortiortech.com</u>

Contained herein Copyright by Fortior Technology (Shenzhen) Co., Ltd all rights reserved.