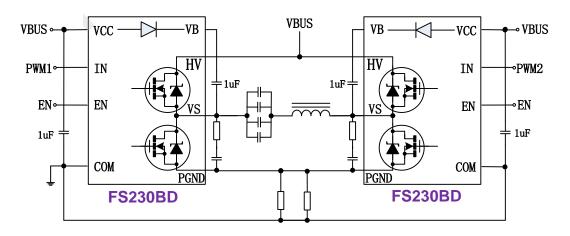


FS230BD Half-Bridge IPM

Description

The FS230BD is a high efficiency synchronous buck power stage module consisting of two asymmetrical MOSFETs and an integrated driver. The MOSFETs are individually optimized for operation in the synchronous buck configuration. The high side and low side MOSFETs has ultra low $R_{DS(ON)}$ to minimize conduction losses.

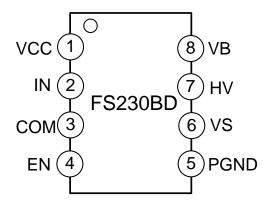
A number of features are provided making the FS230BD a highly versatile power module. The bootstrap diode is integrated in the driver.


Features

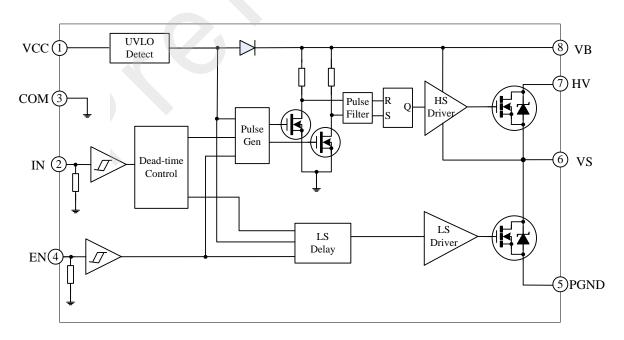
- Integrated Power 18mΩ Switches
- Integrated bootstrap diode
- Up to 25V DC bus voltage
- 4V to 20V supply voltage
- Up to 25A output current
- Up to 500kHz Switching Frequency
- 3.3V/5V logic input compatible
- Under-voltage lockout for all channels
- Disable function
- ROHS compliant and halogen free

Applications

- General Wireless Power Transmitter for Consumer, Industrial and Medical Applications
- Full or Half Bridge DC-DC Switching Regulator
- Motor Driver


Typical Application Circuit

REV_Preliminary_0.2 1 / 6 www.fortiortech.com


Pin Configuration

Pin Description

Pin	Name	Description				
1	VCC	Low side and logic fixed supply				
2	IN	Logic Input. Drive IN high to turn on the high-side switch; drive IN low to turn the low-side switch.				
3	COM	Low Side Gate Drive Return				
4	EN	Logic input for driver enable/disable. Drive EN high to turn on the FS230BD, drive EN low to turn off the FS230BD.				
5	PGND	Low Side Source Connection				
6	VS	Phase Output				
7	HV	DC Bus				
8	VB	High Side Floating Supply. Connect a 0.1uF or greater capacitor between VB and VS.				

Functional Block Diagram

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage to the device.

Symbol	Description	Min	Тур	Max	Unit
V_{HV}	DC Bus Voltage	-0.3		25	V
V_{S}	High side floating supply offset voltage	-3		V_{HV}	V
V_{BS}	V _B to V _S voltage	-0.3		25	V
VCC	Low Side fixed supply voltage	-0.3		25	V
$V_{\rm IN}$	Logic input voltage IN, EN	-0.3		7	V
T_{J}	Maximum Operating Junction Temperature			150	$\mathcal C$
${ m T_L}$	Lead temperature (soldering 30 seconds)			260	$\mathcal C$
T_{S}	Storage Temperature Range	-55		150	$\mathcal C$
R _{th(J-C)}	Thermal resistance, junction to case		10		°C/W
R _{th(J-A)}	Thermal resistance, junction to ambient		50		°C/W

Recommended Operating Conditions

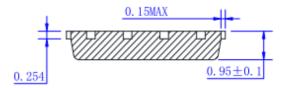
The device is not guaranteed to operate beyond the Maximum Recommended Operating Conditions.

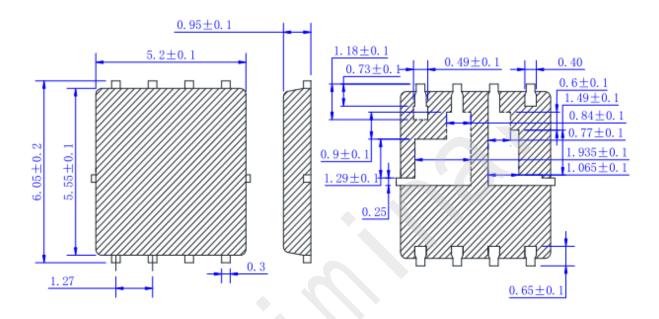
Symbol	Description	Min	Тур	Max	Units
V_{HV}	Positive DC Bus Input Voltage		12	20	V
V_{S}	High Side Floating Supply Offset Voltage			20	V
V_{CC}	Low Side and Logic Supply Voltage	4		20	V
$V_{\rm IN}$	Logic Input Voltage	0		6	V
f_{SW}	Swithing Frequency			500	kHz
T_{A}	Operating Temperature	-40		85	${\mathbb C}$

REV_Preliminary_0.2 3 / 6 www.fortiortech.com

Static Electrical Characteristics (Note1)

 $V_{\text{CC}}\!\!=\!\!12\text{V}, T_{A}\!\!=\!\!25\,^{\circ}\!\text{C}$, unless otherwise specified.


Symbol	Description	Min	Тур	Max	Units	Conditions
V _{IN/EN}	Logic "1" input voltage for IN/EN	2.7			V	
V _{IN/EN}	Logic "0" input voltage for IN/EN			0.8	V	
V _{CCUV+}	VCC Supply Under-Voltage, Positive Going Threshold	3.1	3.5	3.9	V	
V _{CCUV} -	VCC supply Under-Voltage, Negative Going Threshold	2.8	3.2	3.6	V	
V_{CCUVH}	VCC Supply Under-Voltage Lock- Out Hysteresis		0.2		V	
V_{F1}	Bootstrap diode VF		0.75		V	I _S =10mA
V_{F2}			0.9		V	I _S =50mA
I_{QCC}	Quiescent VCC Supply Current		450	800	uA	$V_{EN}=0V$
I_{IN+}	Input Bias Current		120	200	uA	V _{IN} =5V
I_{IN-}	Input Bias Current			1	uA	V _{IN} =0V
I_{EN+}	Input Bias Current		120	200	uA	$V_{EN}=5V$
I _{EN-}	Input Bias Current			1	uA	$V_{EN}=0V$
T _{ON}	Input to Output Propagation Turn-On Delay Time		150		ns	
$T_{ m OFF}$	Input to Output Propagation Turn-Off Delay Time		100		ns	
MOSFET Avalanche Characteristics						
BV_{DSS}	Drain-to-Source Breakdown Voltage	30			V	I _{LK} =1mA
I_{LKH}	Leakage Current of FET's in Parallel		1		uA	$V_{DS}=30V$
R _{DS(ON)}	Drain to Source ON Resistance		13	18	mΩ	V _{CC} =10V,I _d =15A
	Diani to Source On Resistance		22	27	mΩ	$V_{CC}=5V,I_d=10A$
V_{SD}	Diode Forward Voltage		0.9	1.2	V	I _{SD} =15A


Note1: All voltages are specified with respect to the corresponding COM pin.

REV_Preliminary_0.2 4 / 6 www.fortiortech.com

Package Information

Part Number	Package Type	Marking ID	Package Method	Quantity
FS230BD	DFN8	FS230BD	Tray	5000

REV_Preliminary_0.2 5 / 6 www.fortiortech.com

Copyright Notice

Copyright by Fortior Technology (Shenzhen) Co., Ltd. All Rights Reserved.

Right to make changes —Fortior Technology (Shenzhen) Co., Ltd reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. The information contained in this manual is provided for the general use by our customers. Our customers should be aware that the personal computer field is the subject of many patents. Our customers should ensure that they take appropriate action so that their use of our products does not infringe upon any patents. It is the policy of Fortior Technology (Shenzhen) Co., Ltd. to respect the valid patent rights of third parties and not to infringe upon or assist others to infringe upon such rights.

This manual is copyrighted by Fortior Technology (Shenzhen) Co., Ltd. You may not reproduce, transmit, transcribe, store in a retrieval system, or translate into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, any part of this publication without the expressly written permission from Fortior Technology (Shenzhen) Co., Ltd.

Fortior Technology (Shenzhen) Co.,Ltd.

Room203, 2/F, Building No.11, Keji Central Road2,

Software Park, High-Tech Industrial Park, Shenzhen, P.R. China 518057

Tel: 0755-26867710 Fax: 0755-26867715

URL: http://www.fortiortech.com

Contained herein

Copyright by Fortior Technology (Shenzhen) Co., Ltd all rights reserved.